
Yuriy Zakharko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp ³ Functionalization in Organic Solvents. ACS Nano, 2019, 13, 9259-9269.	7.3	48
2	Effect of density of surface defects on photoluminescence properties in MAPbI ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5285-5292.	2.7	57
3	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 2490-2499.	4.0	29
4	Infrared Organic Lightâ€Emitting Diodes with Carbon Nanotube Emitters. Advanced Materials, 2018, 30, e1706711.	11.1	54
5	Ultrastrong Coupling of Electrically Pumped Nearâ€Infrared Excitonâ€Polaritons in High Mobility Polymers. Advanced Optical Materials, 2018, 6, 1700962.	3.6	38
6	From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 11135-11142.	4.0	36
7	Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals. Nano Letters, 2018, 18, 4927-4933.	4.5	25
8	Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities. ACS Photonics, 2018, 5, 2074-2080.	3.2	26
9	Direct visualization of percolation paths in carbon nanotube/polymer composites. Organic Electronics, 2017, 45, 151-158.	1.4	12
10	Doping-dependent G-mode shifts of small diameter semiconducting single-walled carbon nanotubes. Carbon, 2017, 118, 261-267.	5.4	36
11	Photocurrent spectroscopy of dye-sensitized carbon nanotubes. Nanoscale, 2017, 9, 11205-11213.	2.8	9
12	Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nature Materials, 2017, 16, 911-917.	13.3	106
13	Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays. Optics Express, 2017, 25, 18092.	1.7	4
14	Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon, 2016, 105, 593-599.	5.4	165
15	Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals. Nano Letters, 2016, 16, 3278-3284.	4.5	31
16	Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes. Nano Letters, 2016, 16, 6504-6510.	4.5	59
17	Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities. ACS Photonics, 2016, 3, 2225-2230.	3.2	29
18	Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications, 2016, 7, 13078.	5.8	91

Yuriy Zakharko

#	Article	IF	CITATIONS
19	Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers. Organic Electronics, 2016, 32, 220-227.	1.4	32
20	Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 5571-5579.	4.0	48
21	On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position. ACS Photonics, 2016, 3, 1-7.	3.2	12
22	Light-Emitting Quantum Dot Transistors: Emission at High Charge Carrier Densities. Nano Letters, 2015, 15, 1822-1828.	4.5	66
23	Photoluminescence enhancement of aligned arrays of single-walled carbon nanotubes by polymer transfer. Nanoscale, 2015, 7, 16715-16720.	2.8	10
24	Formation and properties of SiC and C particle nanoâ€colloids in nonâ€polar liquids. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 153-157.	0.8	1
25	Trion Electroluminescence from Semiconducting Carbon Nanotubes. ACS Nano, 2014, 8, 8477-8486.	7.3	81
26	Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC. Engineering Materials, 2014, , 323-348.	0.3	1
27	Plasmon-enhanced nonlinear optical properties of SiC nanoparticles. Nanotechnology, 2013, 24, 055703.	1.3	27
28	Fluorescent (Au@SiO2)SiC Nanohybrids: Influence of Gold Nanoparticle Diameter and SiC Nanoparticle Surface Density. Plasmonics, 2013, 8, 85-92.	1.8	9
29	Nanostructured silicon nitride thin films for label-free multicolor luminescent cell imaging. Nanoscale, 2012, 4, 5860.	2.8	5
30	Plasmon-Enhanced Photoluminescence of SiC Quantum Dots for Cell Imaging Applications. Plasmonics, 2012, 7, 725-732.	1.8	18
31	SiC as a Biocompatible Marker for Cell Labeling. , 2012, , 377-429.		4
32	Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@SiO2)SiC nanohybrids. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
33	Local Electric Field Effects on Photo-Induced Electronic Transitions in SiC Quantum Dots. , 2011, , .		1
34	Strong photoluminescence enhancement of silicon quantum dots by their near-resonant coupling with multi-polar plasmonic hot spots. Nanoscale, 2011, 3, 2472.	2.8	21
35	Direct synthesis of luminescent SiC quantum dots in water by laser ablation. Physica Status Solidi - Rapid Research Letters, 2011, 5, 292-294.	1.2	21
36	Influence of the interfacial chemical environment on the luminescence of 3Cî—,SiC nanoparticles. Journal of Applied Physics, 2010, 107, 013503.	1.1	49

#	Article	IF	CITATIONS
37	Photoluminescence properties of silica aerogel/porous silicon nanocomposites. Journal Physics D: Applied Physics, 2010, 43, 335405.	1.3	10
38	Interconnected Si nanocrystals forming thin films with controlled bandgap values. Applied Physics Letters, 2009, 95, 083124.	1.5	7
39	Luminescence mechanisms in 6H-SiC nanocrystals. Physical Review B, 2009, 80, .	1.1	28