Yuriy Zakharko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479055/publications.pdf

Version: 2024-02-01

		304368	344852
39	1,321	22	36
papers	citations	h-index	g-index
20	20	20	1000
39	39	39	1888
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon, 2016, 105, 593-599.	5.4	165
2	Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nature Materials, 2017, 16, 911-917.	13.3	106
3	Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nature Communications, 2016, 7, 13078.	5.8	91
4	Trion Electroluminescence from Semiconducting Carbon Nanotubes. ACS Nano, 2014, 8, 8477-8486.	7.3	81
5	Light-Emitting Quantum Dot Transistors: Emission at High Charge Carrier Densities. Nano Letters, 2015, 15, 1822-1828.	4.5	66
6	Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes. Nano Letters, 2016, 16, 6504-6510.	4.5	59
7	Effect of density of surface defects on photoluminescence properties in MAPbl ₃ perovskite films. Journal of Materials Chemistry C, 2019, 7, 5285-5292.	2.7	57
8	Infrared Organic Lightâ€Emitting Diodes with Carbon Nanotube Emitters. Advanced Materials, 2018, 30, e1706711.	11.1	54
9	Influence of the interfacial chemical environment on the luminescence of 3Cî—,SiC nanoparticles. Journal of Applied Physics, 2010, 107, 013503.	1.1	49
10	Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes. ACS Applied Materials & Diterfaces, 2016, 8, 5571-5579.	4.0	48
11	Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp ³ Functionalization in Organic Solvents. ACS Nano, 2019, 13, 9259-9269.	7.3	48
12	Ultrastrong Coupling of Electrically Pumped Nearâ€Infrared Excitonâ€Polaritons in High Mobility Polymers. Advanced Optical Materials, 2018, 6, 1700962.	3.6	38
13	Doping-dependent G-mode shifts of small diameter semiconducting single-walled carbon nanotubes. Carbon, 2017, 118, 261-267.	5.4	36
14	From Broadband to Electrochromic Notch Filters with Printed Monochiral Carbon Nanotubes. ACS Applied Materials & D. 10, 11135-11142.	4.0	36
15	Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers. Organic Electronics, 2016, 32, 220-227.	1.4	32
16	Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals. Nano Letters, 2016, 16, 3278-3284.	4.5	31
17	Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities. ACS Photonics, 2016, 3, 2225-2230.	3.2	29
18	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2490-2499.	4.0	29

#	Article	IF	CITATIONS
19	Luminescence mechanisms in 6H-SiC nanocrystals. Physical Review B, 2009, 80, .	1.1	28
20	Plasmon-enhanced nonlinear optical properties of SiC nanoparticles. Nanotechnology, 2013, 24, 055703.	1.3	27
21	Trion-Polariton Formation in Single-Walled Carbon Nanotube Microcavities. ACS Photonics, 2018, 5, 2074-2080.	3.2	26
22	Radiative Pumping and Propagation of Plexcitons in Diffractive Plasmonic Crystals. Nano Letters, 2018, 18, 4927-4933.	4.5	25
23	Strong photoluminescence enhancement of silicon quantum dots by their near-resonant coupling with multi-polar plasmonic hot spots. Nanoscale, 2011, 3, 2472.	2.8	21
24	Direct synthesis of luminescent SiC quantum dots in water by laser ablation. Physica Status Solidi - Rapid Research Letters, 2011, 5, 292-294.	1.2	21
25	Plasmon-Enhanced Photoluminescence of SiC Quantum Dots for Cell Imaging Applications. Plasmonics, 2012, 7, 725-732.	1.8	18
26	Plasmon-controlled narrower and blue-shifted fluorescence emission in (Au@SiO2)SiC nanohybrids. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
27	On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position. ACS Photonics, 2016, 3, 1-7.	3.2	12
28	Direct visualization of percolation paths in carbon nanotube/polymer composites. Organic Electronics, 2017, 45, 151-158.	1.4	12
29	Photoluminescence properties of silica aerogel/porous silicon nanocomposites. Journal Physics D: Applied Physics, 2010, 43, 335405.	1.3	10
30	Photoluminescence enhancement of aligned arrays of single-walled carbon nanotubes by polymer transfer. Nanoscale, 2015, 7, 16715-16720.	2.8	10
31	Fluorescent (Au@SiO2)SiC Nanohybrids: Influence of Gold Nanoparticle Diameter and SiC Nanoparticle Surface Density. Plasmonics, 2013, 8, 85-92.	1.8	9
32	Photocurrent spectroscopy of dye-sensitized carbon nanotubes. Nanoscale, 2017, 9, 11205-11213.	2.8	9
33	Interconnected Si nanocrystals forming thin films with controlled bandgap values. Applied Physics Letters, 2009, 95, 083124.	1.5	7
34	Nanostructured silicon nitride thin films for label-free multicolor luminescent cell imaging. Nanoscale, 2012, 4, 5860.	2.8	5
35	SiC as a Biocompatible Marker for Cell Labeling. , 2012, , 377-429.		4
36	Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays. Optics Express, 2017, 25, 18092.	1.7	4

#	Article	IF	CITATIONS
37	Local Electric Field Effects on Photo-Induced Electronic Transitions in SiC Quantum Dots. , 2011, , .		1
38	Preparation, Luminescent Properties and Bioimaging Application of Quantum Dots Based on Si and SiC. Engineering Materials, 2014, , 323-348.	0.3	1
39	Formation and properties of SiC and C particle nanoâ€colloids in nonâ€polar liquids. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 153-157.	0.8	1