Tiangang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1479036/publications.pdf

Version: 2024-02-01

136950 149698 3,401 74 32 h-index citations papers

g-index 79 79 79 3494 docs citations times ranked citing authors all docs

56

#	Article	IF	CITATIONS
1	Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52, 134-142.	7.0	251
2	Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metabolic Engineering, 2010, 12, 378-386.	7.0	198
3	In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2014, 111, 1396-1405.	3.3	182
4	Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS oVâ€2 and Other Respiratory Viruses. Small, 2020, 16, e2002169.	10.0	169
5	Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nature Communications, 2019, 10, 4248.	12.8	158
6	In vitro reconstitution and steady-state analysis of the fatty acid synthase from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18643-18648.	7.1	152
7	Genetic Engineering of <i>Escherichia coli</i> for Biofuel Production. Annual Review of Genetics, 2010, 44, 53-69.	7.6	119
8	Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metabolic Engineering, 2018, 50, 74-84.	7.0	102
9	Strategies for terpenoid overproduction and new terpenoid discovery. Current Opinion in Biotechnology, 2017, 48, 234-241.	6.6	99
10	Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metabolic Engineering, 2014, 22, 10-21.	7.0	95
11	Releasing the potential power of terpene synthases by a robust precursor supply platform. Metabolic Engineering, 2017, 42, 1-8.	7.0	93
12	Overproduction of fatty acids in engineered <i>Saccharomyces cerevisiae</i> Bioengineering, 2014, 111, 1841-1852.	3.3	82
13	Systematic Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Lycopene Overproduction. Journal of Agricultural and Food Chemistry, 2019, 67, 11148-11157.	5.2	79
14	Discovery of non-squalene triterpenes. Nature, 2022, 606, 414-419.	27.8	71
15	Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in <i>Streptomyces</i> ACS Synthetic Biology, 2017, 6, 995-1005.	3.8	70
16	Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metabolic Engineering, 2015, 28, 82-90.	7.0	68
17	Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochemistry, 2015, 50, 341-346.	3.7	67
18	Synthetic Multienzyme Complexes, Catalytic Nanomachineries for Cascade Biosynthesis <i>In Vivo</i> ACS Nano, 2019, 13, 9895-9906.	14.6	65

#	Article	lF	CITATIONS
19	Identification of NanE as the Thioesterase for Polyether Chain Release in Nanchangmycin Biosynthesis. Chemistry and Biology, 2006, 13, 945-955.	6.0	58
20	A Clade IIâ€D Fungal Chimeric Diterpene Synthase from <i>Colletotrichum gloeosporioides</i> Produces Dolastaâ€1(15),8â€diene. Angewandte Chemie - International Edition, 2018, 57, 15887-15890.	13.8	57
21	Genome mining of astaxanthin biosynthetic genes from <i>Sphingomonas </i> sp. ATCC 55669 for heterologous overproduction in <i>Escherichia coli</i> Biotechnology Journal, 2016, 11, 228-237.	3.5	56
22	Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metabolic Engineering, 2017, 39, 228-236.	7.0	56
23	Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metabolic Engineering, 2014, 22, 69-75.	7.0	55
24	Synthesis and biological evaluation of salinomycin triazole analogues as anticancer agents. European Journal of Medicinal Chemistry, 2017, 127, 900-908.	5. 5	51
25	Promising methods for detection of novel coronavirus SARSâ€CoVâ€2. View, 2020, 1, e4.	5.3	47
26	Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnology for Biofuels, 2015, 8, 92.	6.2	45
27	3β-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is linked to depression in males. Cell Host and Microbe, 2022, 30, 329-339.e5.	11.0	45
28	Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin. Chemistry and Biology, 2008, 15, 449-458.	6.0	44
29	Production of taxadiene by engineering of mevalonate pathway in <i>Escherichia coli</i> and endophytic fungus <i>Alternaria alternata</i> TPF6. Biotechnology Journal, 2017, 12, 1600697.	3.5	39
30	Microbial production strategies and applications of lycopene and other terpenoids. World Journal of Microbiology and Biotechnology, 2016, 32, 15.	3.6	37
31	<i>In Vitro</i> Reconstitution and Optimization of the Entire Pathway to Convert Glucose into Fatty Acid. ACS Synthetic Biology, 2017, 6, 701-709.	3.8	37
32	Development of Streptomyces sp. FR-008 as an emerging chassis. Synthetic and Systems Biotechnology, 2016, 1, 207-214.	3.7	36
33	Semisynthesis of Plant-Derived Englerin A Enabled by Microbe Engineering of Guaia-6,10(14)-diene as Building Block. Journal of the American Chemical Society, 2020, 142, 2760-2765.	13.7	36
34	Chapter 9 The Enzymology of Polyether Biosynthesis. Methods in Enzymology, 2009, 459, 187-214.	1.0	33
35	A Cellâ€Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. Advanced Science, 2020, 7, 2001616.	11.2	33
36	Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi. Nature Catalysis, 2022, 5, 277-287.	34.4	33

#	Article	IF	CITATIONS
37	Structure-guided reshaping of the acyl binding pocket of â€TesA thioesterase enhances octanoic acid production in E. coli. Metabolic Engineering, 2020, 61, 24-32.	7.0	31
38	Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes. Biotechnology Journal, 2019, 14, e1700769.	3.5	30
39	Metabolic Engineering-Based Rapid Characterization of a Sesquiterpene Cyclase and the Skeletons of Fusariumdiene and Fusagramineol from <i>Fusarium graminearum</i> . Organic Letters, 2018, 20, 1626-1629.	4.6	27
40	Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. Journal of Pharmaceutical Analysis, 2021, 11, 709-716.	5.3	24
41	Systematic identification of Ocimum sanctum sesquiterpenoid synthases and (â^')-eremophilene overproduction in engineered yeast. Metabolic Engineering, 2022, 69, 122-133.	7.0	24
42	Production of acrylic acid and propionic acid by constructing a portion of the 3-hydroxypropionate/4-hydroxybutyrate cycle from <i>Metallosphaera sedula</i> in <i>Escherichia coli</i> Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1659-1670.	3.0	23
43	Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
44	Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components. Biochemical Engineering Journal, 2018, 138, 47-53.	3.6	22
45	Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nature Communications, 2020, 11, 3958.	12.8	22
46	Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone. Metabolic Engineering, 2022, 72, 107-115.	7.0	22
47	A Balancing Act for Taxol Precursor Pathways in <i>E. coli</i> . Science, 2010, 330, 44-45.	12.6	17
48	In vitro reconstitution guide for targeted synthetic metabolism of chemicals, nutraceuticals and drug precursors. Synthetic and Systems Biotechnology, 2016, 1, 25-33.	3.7	15
49	Eine chimä pilzliche Diterpensynthase der Klade IIâ€D aus <i>Colletotrichum gloeosporioides</i> produziert Dolastaâ€1(15),8â€dien. Angewandte Chemie, 2018, 130, 16113-16117.	2.0	15
50	Harnessing in vitro platforms for natural product research: in vitro driven rational engineering and mining (iDREAM). Current Opinion in Biotechnology, 2021, 69, 1-9.	6.6	15
51	Comparative studies of glycolytic pathways and channeling under <i>in vitro</i> and <i>in vivo</i> modes. AICHE Journal, 2019, 65, 483-490.	3.6	14
52	Genome mining in <i>Trichoderma viride</i> J1-030: discovery and identification of novel sesquiterpene synthase and its products. Beilstein Journal of Organic Chemistry, 2019, 15, 2052-2058.	2.2	13
53	A Family of Related Fungal and Bacterial Di―and Sesterterpenes: Studies on Fusaterpenol and Variediene. ChemBioChem, 2020, 21, 486-491.	2.6	13
54	Changes in phospholipid metabolism in exosomes of hormone-sensitive and hormone-resistant prostate cancer cells. Journal of Cancer, 2021, 12, 2893-2902.	2.5	13

#	Article	IF	CITATIONS
55	Revolution of vitamin E production by starting from microbial fermented farnesene to isophytol. Innovation(China), 2022, 3, 100228.	9.1	13
56	Auxiliary Module Promotes the Synthesis of Carboxysomes in <i>E. coli</i> to Achieve High-Efficiency CO ₂ Assimilation. ACS Synthetic Biology, 2021, 10, 707-715.	3.8	12
57	Aglycone Polyether Nanchangmycin and Its Homologues Exhibit Apoptotic and Antiproliferative Activities against Cancer Stem Cells. ACS Pharmacology and Translational Science, 2018, 1, 84-95.	4.9	10
58	Absolute quantification of proteins in the fatty acid biosynthetic pathway using protein standard absolute quantification. Synthetic and Systems Biotechnology, 2016, 1, 150-157.	3.7	9
59	Sesquiterpenoids Produced by Combining Two Sesquiterpene Cyclases with Promiscuous Myxobacterial CYP260B1. ChemBioChem, 2019, 20, 677-682.	2.6	9
60	Genomics-driven discovery of the biosynthetic gene cluster of maduramicin and its overproduction in <i>Actinomadura</i> sp. J1-007. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 275-285.	3.0	9
61	Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synthetic and Systems Biotechnology, 2021, 6, 292-301.	3.7	8
62	Evaluation of 3-hydroxypropionate biosynthesis in vitro by partial introduction of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 1313-1321.	3.0	7
63	In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity. Methods in Enzymology, 2018, 608, 97-129.	1.0	7
64	Rapid Profiling of Chemical Constituents in Qingfei Paidu Granules Using High Performance Liquid Chromatography Coupled with Q Exactive Mass Spectrometry. Chromatographia, 2021, 84, 1035-1048.	1.3	6
65	Markerâ€Free System Using Ribosomal Promoters Enhanced Xylose/Glucose Isomerase Production in <i>Streptomyces rubiginosus ⟨i⟩. Biotechnology Journal, 2019, 14, e1900114.</i>	3.5	5
66	Overproduction of gentamicin B in industrial strain Micromonospora echinospora CCTCC M 2018898 by cloning of the missing genes genR and genS. Metabolic Engineering Communications, 2019, 9, e00096.	3.6	5
67	Solarâ€Driven Overproduction of Biofuels in Microorganisms. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
68	Recent advances in the elucidation of enzymatic function in natural product biosynthesis. F1000Research, 2015, 4, 1399.	1.6	3
69	Self-Assembled Enzymatic Nanowires with a "Dry and Wet―Interface Improve the Catalytic Performance of Januvia Transaminase in Organic Solvents. ACS Catalysis, 2022, 12, 372-382.	11.2	3
70	The concordance between the evolutionary trend and the clinical manifestation of the two SARS-CoV-2 variants. National Science Review, 2021, 8, nwab073.	9.5	2
71	Evaluation and optimization of analytical procedure and sample preparation for polar Streptomyces albus J1074 metabolome profiling. Synthetic and Systems Biotechnology, 2022, 7, 949-957.	3.7	2
72	Editorial overview: Pharmaceutical biotechnology. Current Opinion in Biotechnology, 2017, 48, 258-259.	6.6	1

TIANGANG LIU

#	Article	IF	CITATIONS
73	Modification of É>â€polyâ€Lâ€lysine in vivo to reduce selfâ€toxicity and enhance antibiotic overproduction. AICHE Journal, 2018, 64, 4187-4192.	3.6	1
74	Solarâ€driven Overproduction of Biofuels inÂMicroorganisms. Angewandte Chemie, 0, , .	2.0	0