Jea Woong Jo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478666/publications.pdf

Version: 2024-02-01

201674 144013 3,365 63 27 57 citations h-index g-index papers 64 64 64 5253 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>Structurallyâ€tuned</scp> benzo[1,2â€b:4,5:b'] <scp>dithiopheneâ€based</scp> polymer as a <scp>dopantâ€free</scp> hole transport material for perovskite solar cells. Journal of Polymer Science, 2022, 60, 985-991.	3.8	9
2	Understanding Effects of Ion Diffusion on Charge Carrier Mobility of Electrolyteâ€Gated Organic Transistor Using Ionic Liquidâ€Embedded Poly(3â€hexylthiophene). Advanced Functional Materials, 2022, 32, 2108215.	14.9	8
3	Stable electrolyte dielectric engineered bottom-gate poly(3-hexylthiophene) transistors with enhanced mobility. Organic Electronics, 2022, 102, 106430.	2.6	2
4	Inclusion of triphenylamine unit in dopant-free hole transport material for enhanced interfacial interaction in perovskite photovoltaics. Dyes and Pigments, 2022, 200, 110162.	3.7	10
5	Perovskite Photovoltaics for Artificial Light Harvesting. Chemistry - A European Journal, 2022, 28, .	3.3	3
6	Frontispiece: Perovskite Photovoltaics for Artificial Light Harvesting. Chemistry - A European Journal, 2022, 28, .	3.3	0
7	Ionic liquid-mediated reconstruction of perovskite surface for highly efficient photovoltaics. Chemical Engineering Journal, 2022, 446, 137351.	12.7	5
8	Random copolymerization of polythiophene for simultaneous enhancement of inâ€plane and outâ€ofâ€plane charge transport for organic transistors and perovskite solar cells. International Journal of Energy Research, 2021, 45, 7998-8007.	4.5	5
9	Random copolymerization of regiorandom polythiophene to improve planarity, aggregation and hole-transport. Dyes and Pigments, 2021, 185, 108943.	3.7	1
10	A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics. Journal of Materials Chemistry A, 2021, 9, 15294-15300.	10.3	27
11	Modulation of energy levels and vertical charge transport in polythiophene through copolymerization of non-fluorinated and fluorinated units for organic indoor photovoltaics. Dyes and Pigments, 2021, 190, 109292.	3.7	1
12	High-mobility amorphous PTB7 organic transistors enabled by high-capacitance electrolyte dielectric. Applied Physics Letters, 2021, 119, .	3.3	3
13	Surface-Passivated CsPbBr3 for Developing Efficient and Stable Perovskite Photovoltaics. Crystals, 2021, 11, 1588.	2.2	6
14	Enhanced photovoltaic performance of solution-processed Sb2Se3 thin film solar cells by optimizing device structure. Current Applied Physics, 2020, 20, 282-287.	2.4	11
15	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nature Communications, 2020, 11, 103.	12.8	181
16	Solidâ€State Electrolyte Dielectrics Based on Exceptional Highâ€ <i>k</i> P(VDFâ€TrFE TFE) Terpolymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials Interfaces, 2020, 7, 2000842.	3.7	10
17	Improved Electron Transport in Ambipolar Organic Field-Effect Transistors with PMMA/Polyurethane Blend Dielectrics. Macromolecular Research, 2020, 28, 1248-1252.	2.4	6
18	Configurationally Random Polythiophene for Improved Polymer Ordering and Charge-Transporting Ability. ACS Applied Materials & Interfaces, 2020, 12, 40599-40606.	8.0	16

#	Article	IF	Citations
19	Exploring low-k dielectrics as structuring polymers for solid-state electrolyte-gated transistors. Organic Electronics, 2019, 75, 105434.	2.6	3
20	Controlling the Morphology of Organic–Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications. ACS Applied Materials & Interfaces, 2019, 11, 17452-17458.	8.0	19
21	Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Solar Energy, 2019, 185, 307-314.	6.1	25
22	A Facetâ€Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	21.0	87
23	A fluorinated polythiophene hole-transport material for efficient and stable perovskite solar cells. Dyes and Pigments, 2019, 164, 1-6.	3.7	31
24	Isoindigo-based conjugated polymer for high-performance organic solar cell with a high VOC of 1.06†V as processed from non-halogenated solvent. Dyes and Pigments, 2019, 161, 113-118.	3.7	20
25	Amideâ€Catalyzed Phaseâ€Selective Crystallization Reduces Defect Density in Wideâ€Bandgap Perovskites. Advanced Materials, 2018, 30, e1706275.	21.0	80
26	Development of organic-inorganic double hole-transporting material for high performance perovskite solar cells. Journal of Power Sources, 2018, 378, 98-104.	7.8	24
27	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. ACS Energy Letters, 2018, 3, 2908-2913.	17.4	20
28	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. Nature Communications, 2018, 9, 4003.	12.8	56
29	Butylamineâ€Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. Advanced Materials, 2018, 30, e1803830.	21.0	67
30	Activated Electronâ€Transport Layers for Infrared Quantum Dot Optoelectronics. Advanced Materials, 2018, 30, e1801720.	21.0	57
31	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	13.7	326
32	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	2.2	17
33	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Nano Letters, 2018, 18, 4417-4423.	9.1	57
34	Highâ∈Performance and Uniform 1 cm ² Polymer Solar Cells with D ₁ â∈Aâ∈D ₂ â∈Aâ€Type Random Terpolymers. Advanced Energy Materials, 2018, 8, 170	01405.	39
35	Development of Novel Conjugated Polyelectrolytes as Water-Processable Interlayer Materials for High-Performance Organic Photodiodes. ACS Photonics, 2017, 4, 703-709.	6.6	12
36	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Nano Letters, 2017, 17, 2349-2353.	9.1	46

#	Article	IF	CITATIONS
37	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivityâ€Controlled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	21.0	49
38	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2017, 29, 1702350.	21.0	126
39	Development of a conjugated donor-acceptor polyelectrolyte with high work function and conductivity for organic solar cells. Organic Electronics, 2017, 50, 1-6.	2.6	8
40	Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction Allâ€Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1601365.	19.5	51
41	Isoindigo-based fluorinated low band gap polymers for environmentally stable field effect transistor. Dyes and Pigments, 2016, 133, 333-338.	3.7	8
42	Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material. Advanced Functional Materials, 2016, 26, 4464-4471.	14.9	136
43	Development of Selfâ€Doped Conjugated Polyelectrolytes with Controlled Work Functions and Application to Hole Transport Layer Materials for Highâ€Performance Organic Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500703.	3.7	41
44	In-situ preparation of graphene/poly(styrenesulfonic acid-graft-polyaniline) nanocomposite via direct exfoliation of graphite for supercapacitor application. Carbon, 2016, 105, 191-198.	10.3	27
45	Synergistic effects of solvent and polymer additives on solar cell performance and stability of small molecule bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 18383-18391.	10.3	17
46	Flexible Electronics: Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material (Adv. Funct. Mater. 25/2016). Advanced Functional Materials, 2016, 26, 4426-4426.	14.9	2
47	Development of intrinsically fullerene-compatible polymers: Strategy for developing high performance organic solar cells using a non-halogenated solvent. Dyes and Pigments, 2016, 132, 103-109.	3.7	5
48	Recent progress in high efficiency polymer solar cells by rational design and energy level tuning of low bandgap copolymers with various electron-withdrawing units. Organic Electronics, 2016, 31, 149-170.	2.6	103
49	Graphene-based electrodes for flexible electronics. Polymer International, 2015, 64, 1676-1684.	3.1	33
50	Effect of fluorine substitution on photovoltaic performance of DPP-based copolymer. Organic Electronics, 2015, 20, 125-131.	2.6	12
51	Fluorination on both D and A units in D–A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells. Energy and Environmental Science, 2015, 8, 2427-2434.	30.8	168
52	Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.	21.0	421
53	Comparison of Two Dâ^'A Type Polymers with Each BeingÂFluorinated on D and A Unit for High Performance Solar Cells. Advanced Functional Materials, 2015, 25, 120-125.	14.9	108
54	Fluorination of Polythiophene Derivatives for High Performance Organic Photovoltaics. Chemistry of Materials, 2014, 26, 4214-4220.	6.7	142

#	Article	IF	CITATIONS
55	Degradation and stability of polymer-based solar cells. Journal of Materials Chemistry, 2012, 22, 24265.	6.7	134
56	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b′]dithiophene for high performance organic photovoltaics. Chemical Communications, 2012, 48, 6933.	4.1	66
57	Synthesis of a low bandgap polymer based on a thiadiazolo-indolo[3,2-b]carbazole derivative for enhancement of open circuit voltage of polymer solar cells. Polymer Chemistry, 2012, 3, 2928.	3.9	17
58	Synthesis of thieno [3,4-d] thiazole-based conjugated polymers and HOMO level tuning for high VOC photovoltaic cell. Organic Electronics, 2012, 13, 1322-1328.	2.6	18
59	Efficiency enhancement of P3HT/PCBM bulk heterojunction solar cells by attaching zinc phthalocyanine to the chain-end of P3HT. Journal of Materials Chemistry, 2011, 21, 17209.	6.7	49
60	Enhanced Performance and Air Stability of Polymer Solar Cells by Formation of a Selfâ€Assembled Buffer Layer from Fullereneâ€Endâ€Capped Poly(ethylene glycol). Advanced Materials, 2011, 23, 1782-1787.	21.0	106
61	Fabrication of Highly Conductive and Transparent Thin Films from Single-Walled Carbon Nanotubes Using a New Non-ionic Surfactant <i>via</i> Spin Coating. ACS Nano, 2010, 4, 5382-5388.	14.6	215
62	Concentrated perovskite photovoltaics enable minimization of energy loss below 0.5 eV under artificial lightâ€emitting diode illumination. International Journal of Energy Research, 0, , .	4.5	6
63	Highâ€purity synthesis of allâ€inorganic <scp> CsPbBr ₃ </scp> perovskite powder assisted by solubilizing organic ligand and its application to perovskite solar cells. International Journal of Energy Research, 0, , .	4.5	3