Gilberto Medeiros-Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/147865/publications.pdf Version: 2024-02-01

	22099	23472
12,817	59	111
citations	h-index	g-index
173	173	8888
docs citations	times ranked	citing authors
	12,817 citations 173 docs citations	12,81759citationsh-index173173docs citationstimes ranked

#	Article	IF	CITATIONS
1	A scalable neuristor built with Mott memristors. Nature Materials, 2013, 12, 114-117.	13.3	867
2	Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes. Science, 1998, 279, 353-355.	6.0	825
3	Memristorâ^ CMOS Hybrid Integrated Circuits for Reconfigurable Logic. Nano Letters, 2009, 9, 3640-3645.	4.5	628
4	Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology, 2011, 22, 485203.	1.3	596
5	Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Applied Physics Letters, 1997, 71, 2014-2016.	1.5	559
6	High switching endurance in TaOx memristive devices. Applied Physics Letters, 2010, 97, .	1.5	543
7	Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a Highâ€Performance Memristor. Advanced Materials, 2011, 23, 5633-5640.	11.1	393
8	Direct Identification of the Conducting Channels in a Functioning Memristive Device. Advanced Materials, 2010, 22, 3573-3577.	11.1	307
9	Charged Excitons in Self-Assembled Semiconductor Quantum Dots. Physical Review Letters, 1997, 79, 5282-5285.	2.9	293
10	Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Applied Physics Letters, 2000, 76, 4004-4006.	1.5	254
11	Coulomb interactions in small charge-tunable quantum dots: A simple model. Physical Review B, 1998, 58, 16221-16231.	1.1	253
12	Shell structure and electron-electron interaction in self-assembled InAs quantum dots. Europhysics Letters, 1996, 36, 197-202.	0.7	248
13	Evolution of Ge islands on Si(001) during annealing. Journal of Applied Physics, 1999, 85, 1159-1171.	1.1	238
14	Few-electron ground states of charge-tunable self-assembled quantum dots. Physical Review B, 1997, 56, 6764-6769.	1.1	233
15	Electron and hole energy levels in InAs selfâ€assembled quantum dots. Applied Physics Letters, 1995, 66, 1767-1769.	1.5	207
16	Carrier relaxation and electronic structure in InAs self-assembled quantum dots. Physical Review B, 1996, 54, 11346-11353.	1.1	200
17	Anisotropy of the Raman Spectra of Nanographite Ribbons. Physical Review Letters, 2004, 93, 047403.	2.9	195
18	Inverse Bloch Oscillator: Strong Terahertz-Photocurrent Resonances at the Bloch Frequency. Physical Review Letters, 1996, 76, 2973-2976.	2.9	183

#	Article	IF	CITATIONS
19	State Dynamics and Modeling of Tantalum Oxide Memristors. IEEE Transactions on Electron Devices, 2013, 60, 2194-2202.	1.6	183
20	Engineering nonlinearity into memristors for passive crossbar applications. Applied Physics Letters, 2012, 100, .	1,5	179
21	3D Composition of Epitaxial Nanocrystals by Anomalous X-Ray Diffraction: Observation of a Si-Rich Core in Ge Domes on Si(100). Physical Review Letters, 2003, 91, 176101.	2.9	159
22	Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature, 2021, 590, 405-409.	13.7	139
23	Individual and Collective Electronic Properties of Ag Nanocrystals. Journal of Physical Chemistry B, 1999, 103, 10341-10347.	1.2	138
24	Metal/TiO2 interfaces for memristive switches. Applied Physics A: Materials Science and Processing, 2011, 102, 785-789.	1.1	138
25	Aharonov-Bohm Signature for Neutral Polarized Excitons in Type-II Quantum Dot Ensembles. Physical Review Letters, 2004, 92, 126402.	2.9	126
26	Polarization-selective excitation of nitrogen vacancy centers in diamond. Physical Review B, 2007, 76, .	1.1	120
27	Continuous Electrical Tuning of the Chemical Composition of TaO _{<i>x</i>} -Based Memristors. ACS Nano, 2012, 6, 2312-2318.	7.3	119
28	Sketched oxide single-electron transistor. Nature Nanotechnology, 2011, 6, 343-347.	15.6	118
29	Single-electron charging and Coulomb interaction in InAs self-assembled quantum dot arrays. Physical Review B, 1997, 55, 1568-1573.	1.1	105
30	Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching. Advanced Materials, 2010, 22, 4034-4038.	11.1	104
31	Annealing of Ge nanocrystals on Si(001) at550°C: Metastability of huts and the stability of pyramids and domes. Physical Review B, 1998, 58, 3533-3536.	1.1	103
32	Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metalâ€Oxideâ€Metal System. Advanced Materials, 2011, 23, 1730-1733.	11.1	103
33	The dynamics of tunneling into self-assembled InAs dots. Applied Physics Letters, 1999, 74, 2486-2488.	1.5	101
34	The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology, 2011, 22, 254015.	1.3	101
35	Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology, 2011, 22, 505402.	1.3	99
36	Direct evaluation of composition profile, strain relaxation, and elastic energy of Ge:Si(001) self-assembled islands by anomalous x-ray scattering. Physical Review B, 2002, 66, .	1.1	98

GILBERTO MEDEIROS-RIBEIRO

#	Article	IF	CITATIONS
37	Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nature Communications, 2016, 7, 11142.	5.8	95
38	Dome-to-pyramid transition induced by alloying of Ge islands on Si(001). Applied Physics A: Materials Science and Processing, 1998, 67, 727-730.	1.1	93
39	Imaging and Spectroscopy of Single InAs Self-Assembled Quantum Dots using Ballistic Electron Emission Microscopy. Physical Review Letters, 1996, 77, 5268-5271.	2.9	86
40	Spectromicroscopy of tantalum oxide memristors. Applied Physics Letters, 2011, 98, .	1.5	85
41	Size quantization effects in InAs self-assembled quantum dots. Applied Physics Letters, 1997, 70, 1727-1729.	1.5	82
42	Photoluminescence of charged InAs self-assembled quantum dots. Physical Review B, 1998, 58, 3597-3600.	1.1	82
43	Assembly of submicrometre ferromagnets in gallium arsenide semiconductors. Nature, 1995, 377, 707-710.	13.7	81
44	Three-Dimensional Carrier Confinement in Strain-Induced Self-Assembled Quantum Dots. MRS Bulletin, 1996, 21, 50-54.	1.7	81
45	Structural and optical characterization of InAs/InGaAs selfâ€assembled quantum dots grown on (311)BGaAs. Journal of Applied Physics, 1996, 80, 3466-3470.	1.1	77
46	Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Nanotechnology, 2011, 22, 095702.	1.3	77
47	InAs self-assembled quantum dots as controllable scattering centers near a two-dimensional electron gas. Physical Review B, 1998, 58, 1506-1511.	1.1	75
48	Feedback write scheme for memristive switching devices. Applied Physics A: Materials Science and Processing, 2011, 102, 973-982.	1.1	75
49	Two―and Threeâ€Terminal Resistive Switches: Nanometerâ€Scale Memristors and Memistors. Advanced Functional Materials, 2011, 21, 2660-2665.	7.8	74
50	Equilibrium Model of Bimodal Distributions of Epitaxial Island Growth. Physical Review Letters, 2003, 90, 146101.	2.9	71
51	A memristor-based nonvolatile latch circuit. Nanotechnology, 2010, 21, 235203.	1.3	71
52	Observation of two resistance switching modes in TiO ₂ memristive devices electroformed at low current. Nanotechnology, 2011, 22, 254007.	1.3	71
53	Thermodynamics of Coherently-Strained GexSi1-xNanocrystals on Si(001):Â Alloy Composition and Island Formation. Nano Letters, 2007, 7, 223-226.	4.5	70
54	Morphological and electrical changes in TiO ₂ memristive devices induced by electroforming and switching. Physica Status Solidi - Rapid Research Letters, 2010, 4, 16-18.	1.2	67

#	Article	IF	CITATIONS
55	Metal-Insulator Transition in a Disordered Two-Dimensional Electron Gas in GaAs-AlGaAs at Zero Magnetic Field. Physical Review Letters, 1999, 82, 996-999.	2.9	65
56	Dopant Control by Atomic Layer Deposition in Oxide Films for Memristive Switches. Chemistry of Materials, 2011, 23, 123-125.	3.2	65
57	Rehybridization of electronic structure in compressed two-dimensional quantum dot superlattices. Physical Review B, 1999, 59, 1633-1636.	1.1	64
58	Magnetoluminescence studies ofInyAl1â^'yAs self-assembled quantum dots inAlxGa1â^'xAs matrices. Physical Review B, 1996, 53, 16458-16461.	1.1	63
59	Nitride memristors. Applied Physics A: Materials Science and Processing, 2012, 109, 1-4.	1.1	63
60	THERMODYNAMICS OF THESIZE ANDSHAPE OFNANOCRYSTALS: Epitaxial Ge on Si(001). Annual Review of Physical Chemistry, 2000, 51, 527-551.	4.8	60
61	Characterization of electroforming-free titanium dioxide memristors. Beilstein Journal of Nanotechnology, 2013, 4, 467-473.	1.5	60
62	Structural and chemical characterization of TiO2memristive devices by spatially-resolved NEXAFS. Nanotechnology, 2009, 20, 485701.	1.3	58
63	Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior. Applied Physics A: Materials Science and Processing, 2012, 107, 1-11.	1.1	58
64	Hybrid CMOS/memristor circuits. , 2010, , .		57
65	LandégTensor in Semiconductor Nanostructures. Physical Review Letters, 2006, 97, 236402.	2.9	53
66	Magnetic properties and imaging of Mn-implanted GaAs semiconductors. Journal of Applied Physics, 1996, 79, 5296.	1.1	50
67	Ordered arrays of rare-earth silicide nanowires on Si(001). Journal of Crystal Growth, 2003, 251, 657-661.	0.7	50
68	Spin splitting of the electron ground states of InAs quantum dots. Applied Physics Letters, 2002, 80, 4229-4231.	1.5	49
69	Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutileTiO2. Physical Review B, 2009, 80, .	1.1	48
70	X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001). Physical Review B, 2005, 72, .	1.1	45
71	Charging dynamics of InAs self-assembled quantum dots. Physical Review B, 1997, 56, 3609-3612.	1.1	43
72	Storage of electrons and holes in self-assembled InAs quantum dots. Applied Physics Letters, 1999, 74, 1839-1841.	1.5	42

#	Article	IF	CITATIONS
73	Evolution of Thermodynamic Potentials in Closed and Open Nanocrystalline Systems: Ge-Si:Si(001) Islands. Physical Review Letters, 2008, 100, 226101.	2.9	42
74	Equilibrium Shape Diagram for Strained Ge Nanocrystals on Si(001). Journal of Physical Chemistry B, 1998, 102, 9605-9609.	1.2	41
75	Size distribution of coherently strained InAs quantum dots. Journal of Applied Physics, 1998, 84, 4268-4272.	1.1	41
76	Luminescence quenching in InAs quantum dots. Applied Physics Letters, 2001, 78, 2946-2948.	1.5	39
77	Alloying Mechanisms for Epitaxial Nanocrystals. Physical Review Letters, 2007, 98, 165901.	2.9	36
78	Graphene nanoribbon superlattices fabricated via He ion lithography. Applied Physics Letters, 2014, 104,	1.5	35
79	Growth and evolution of epitaxial erbium disilicide nanowires on Si?(001). Applied Physics A: Materials Science and Processing, 2002, 75, 353-361.	1.1	33
80	Chemical Thermodynamics of the Size and Shape of Strained Ge Nanocrystals Grown on Si(001). Accounts of Chemical Research, 1999, 32, 425-433.	7.6	30
81	Extended excitons and compact heliumlike biexcitons in type-II quantum dots. Physical Review B, 2009, 80, .	1.1	30
82	g -factor engineering and control in self-assembled quantum dots. Applied Physics A: Materials Science and Processing, 2003, 77, 725-729.	1.1	29
83	Titanium disilicide nanostructures: two phases and their surfaces. Surface Science, 1999, 431, 116-127.	0.8	28
84	The incommensurate nature of epitaxial titanium disilicide islands on Si(001). Surface Science, 2000, 457, 147-156.	0.8	28
85	AC sense technique for memristor crossbar. Electronics Letters, 2012, 48, 757.	0.5	28
86	Electronic coupling effects in self-assembled InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 704-708.	1.3	26
87	Impact of geometry on the performance of memristive nanodevices. Nanotechnology, 2011, 22, 254026.	1.3	26
88	Microstrip resonators for electron paramagnetic resonance experiments. Review of Scientific Instruments, 2009, 80, 075111.	0.6	25
89	Electronic structure of nanometer-size quantum dots and quantum rings. Microelectronic Engineering, 1999, 47, 95-99.	1.1	24
90	On the origin of the blueshift from type-II quantum dots emission using microphotoluminescence. Applied Physics Letters, 2002, 81, 2743-2745.	1.5	24

#	Article	IF	CITATIONS
91	Size Quantization and Zero Dimensional Effects in Self Assembled Semiconductor Quantum Dots. Japanese Journal of Applied Physics, 1997, 36, 4068-4072.	0.8	22
92	Coulomb-coupling in vertically aligned self-assembled InAs quantum dots. Nanotechnology, 1999, 10, 14-18.	1.3	22
93	Optical and structural properties of InAsP ternary self-assembled quantum dots embedded in GaAs. Applied Physics Letters, 2002, 81, 2953-2955.	1.5	21
94	Absorptive and dispersive optical responses of excitons in a single quantum dot. Applied Physics Letters, 2006, 89, 123124.	1.5	21
95	Twisted Bilayer Graphene: A Versatile Fabrication Method and the Detection of Variable Nanometric Strain Caused by Twist-Angle Disorder. ACS Applied Nano Materials, 2021, 4, 1858-1866.	2.4	19
96	Revealing Quantitative 3D Chemical Arrangement on Geâ^'Si Nanostructures. Journal of Physical Chemistry C, 2009, 113, 9018-9022.	1.5	18
97	Atomic ordering dependence on growth method in Ge:Si(001) islands: Influence of surface kinetic and thermodynamic interdiffusion mechanisms. Physical Review B, 2010, 82, .	1.1	18
98	Luminescence spectroscopy of InAs self-assembled quantum dots. Superlattices and Microstructures, 1997, 21, 259-266.	1.4	17
99	Elastic energy mapping of epitaxial nanocrystals. Applied Physics A: Materials Science and Processing, 2005, 80, 1211-1214.	1.1	17
100	Scanning Tunneling Microscopy of Template-Stripped Au Surfaces and Highly Ordered Self-Assembled Monolayers. Langmuir, 2008, 24, 5984-5987.	1.6	17
101	Nanoscale lateral switchable rectifiers fabricated by local anodic oxidation. Journal of Applied Physics, 2011, 110, 024511.	1.1	17
102	The diffuse behavior of the ferroelectric transition in poly(vinylidene fluoride-trifluoroethylene) copolymers. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 953-959.	2.4	16
103	Influence of phosphine on Ge/Si(001) island growth by chemical vapor deposition. Journal of Applied Physics, 2003, 94, 4215-4224.	1.1	15
104	Microstrip resonator for microwaves with controllable polarization. Applied Physics Letters, 2007, 91, 204103.	1.5	15
105	Two-dimensional magnetoexcitons in type-II semiconductor quantum dots. Physical Review B, 2008, 78, .	1.1	15
106	The effect of the planar doping on the electrical transport properties at the Al:nâ€GaAs(100) interface: Ultrahigh effective doping. Journal of Applied Physics, 1993, 73, 820-823.	1.1	14
107	Dissipative dynamics of spins in quantum dots. Physical Review B, 2004, 70, .	1.1	12
108	X-ray diffraction mapping of strain fields and chemical composition of SiGe:Si(001) quantum dot molecules. Physical Review B, 2006, 73, .	1.1	12

#	Article	IF	CITATIONS
109	Control of Ge/Si intermixing during Ge island growth. Applied Physics Letters, 2009, 94, .	1.5	12
110	Raman spectra of twisted bilayer graphene close to the magic angle. 2D Materials, 2022, 9, 025007.	2.0	12
111	Equilibrium size distributions of clusters during strained epitaxial growth. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 67, 31-38.	1.7	11
112	Effect of phosphorus on Ge/Si(001) island formation. Applied Physics Letters, 2001, 78, 2220-2222.	1.5	11
113	Micro-photoluminescence of self-assembled quantum dots in the presence of an electron gas. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 872-875.	1.3	11
114	The limits of near field immersion microwave microscopy evaluated by imaging bilayer graphene moiré patterns. Nature Communications, 2021, 12, 2980.	5.8	11
115	Fine structure in the spectrum of the few-electron ground states of self-assembled quantum dots. Physica B: Condensed Matter, 1998, 249-251, 257-261.	1.3	10
116	Seeding of InP islands on InAs quantum dot templates. Journal of Applied Physics, 2001, 89, 6548-6550.	1.1	10
117	Annealing of phosphorus-doped Ge islands on Si(001). Journal of Applied Physics, 2004, 95, 1562-1567.	1.1	10
118	Band offsets in transition-metal oxide heterostructures. Journal Physics D: Applied Physics, 2013, 46, 295303.	1.3	10
119	Magneto-optical properties of InAs monolayers and InyAl1â^'yAs self-assembled quantum dots in Ga(Al)As matrices. Physica B: Condensed Matter, 1996, 227, 378-383.	1.3	9
120	Patterning graphene with a helium ion microscope: Observation of metal-insulator transition induced by disorder. Physical Review B, 2015, 91, .	1.1	9
121	Electrical conductivity of α-LiIO3 acid type crystals at 1 kHz. Solid State Communications, 1995, 93, 1013-1017.	0.9	8
122	Transport properties of two-dimensional electron gases in Ga[Al]As heterostructures containing InAs self-assembled quantum dots. Microelectronic Engineering, 1999, 47, 73-75.	1.1	8
123	An optical study of self-assembled InxGa1â~'xAs/GaAs quantum dots embedded in a two-dimensional electron gas. Journal of Applied Physics, 2000, 87, 7994-7998.	1.1	8
124	Controlling alloy composition of InAsP self-assembled quantum dots embedded in GaAs. Journal of Applied Physics, 2003, 94, 3051-3056.	1.1	8
125	Submicron fabrication by local anodic oxidation of germanium thin films. Nanotechnology, 2009, 20, 345301.	1.3	8
126	Interband absorption on self-assembled InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 23-27.	1.3	7

#	Article	IF	CITATIONS
127	Field dependent carrier dynamics and charged excitons in InAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 627-631.	1.3	7
128	Progress in CMOS-memristor integration. , 2011, , .		7
129	Quantum corrections to conductivity in graphene with vacancies. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 100, 40-44.	1.3	7
130	Photon assisted transport through semiconductor quantum structures in intense terahertz electric fields. Physica B: Condensed Matter, 1996, 227, 367-372.	1.3	6
131	Charging dynamics in vertically aligned InAs quantum dots. Materials Science and Technology, 2002, 18, 725-728.	0.8	6
132	Equilibrium Distributions and the Nanostructure Diagram for Epitaxial Quantum Dots. Journal of Computational and Theoretical Nanoscience, 2007, 4, 335-347.	0.4	6
133	Photoluminescence measurements of complex defects in Siâ€doped Al0.3Ga0.7As. Journal of Applied Physics, 1994, 76, 8051-8054.	1.1	5
134	InAs/InGaAs self-assembled quantum dots grown on (311)B GaAs by molecular beam epitaxy. , 0, , .		5
135	Epitaxial Growth of Strained Nanocrystals. Physica Status Solidi (B): Basic Research, 2002, 230, 443-450.	0.7	5
136	Transport signatures of correlated disorder in a two-dimensional electron gas. Europhysics Letters, 2003, 61, 674-680.	0.7	5
137	Optical properties of type-I and II quantum dots. Brazilian Journal of Physics, 2004, 34, 555-559.	0.7	5
138	Intermixing during Ripening in Ge–Si Incoherent Epitaxial Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 901-907.	1.5	5
139	Novel Approach for High-Resolution Elastic Behavior Assessment of Alloyed Strained Nanostructures. Journal of Physical Chemistry C, 2010, 114, 12409-12415.	1.5	4
140	X-RAY DIFFRACTION METHODS FOR STUDYING STRAIN AND COMPOSITION IN EPITAXIAL NANOSTRUCTURED SYSTEMS. Materials and Energy, 2011, , 211-279.	2.5	4
141	Prediction-free, real-time flexible control of tidal lagoons through Proximal Policy Optimisation: A case study for the Swansea Lagoon. Ocean Engineering, 2022, 247, 110657.	1.9	4
142	Limits and Properties of Size Quantization Effects in InAs Self Assembled Quantum Dots. Materials Research Society Symposia Proceedings, 1996, 452, 275.	0.1	3
143	Effect of phosphorus on island formation. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 974-977.	1.3	3

144 <title>Excited states in InAs self-assembled quantum dots</title>., 1996, 2694, 185.

#	Article	IF	CITATIONS
145	TEM study of InAs self-assembled quantum dots in GaAs. Thin Solid Films, 1998, 336, 38-41.	0.8	2
146	Reactive epitaxy of metallic hafnium silicide nanocrystals. Applied Physics Letters, 2008, 93, 013107.	1.5	2
147	Determination of spin polarization in InAsâ^GaAs self-assembled quantum dots. Applied Physics Letters, 2008, 92, 132106.	1.5	2
148	Assessing electronic states of InAsP/GaAs self-assembled quantum dots by photoluminescence and modulation spectroscopy. Journal of Luminescence, 2019, 206, 639-644.	1.5	2
149	Size and Shape of Epitaxial Nanostructures. , 2003, , 81-93.		2
150	Observation of moir \tilde{A} $^{\odot}$ superlattices on twisted bilayer graphene by scanning microwave impedance microscopy. , 2020, , .		2
151	DX-center energy level dependence on silicon doping concentration in Al0.3Ga0.7As. Journal of Electronic Materials, 1995, 24, 907-912.	1.0	1
152	Magnetic field dependence of the metal–insulator transition in Ga[Al]As-heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 264-267.	1.3	1
153	Anomalous X-Ray Scattering On Self-Assembled Islands: Direct Evaluation Of Composition Profile, Strain Relaxation, And Elastic Energy. Materials Research Society Symposia Proceedings, 2002, 737, 35.	0.1	1
154	Nanoscience and Nanotechnology Research at the Brazilian National Synchrotron Laboratory (LNLS). Physica Status Solidi (B): Basic Research, 2002, 232, 24-31.	0.7	1
155	Magneto-optics from type-II single quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 543-546.	0.8	1
156	Oxide based memristive devices. , 2012, , .		1
157	Designing memristors: Physics, materials science and engineering. , 2012, , .		1
158	Oxide Based Memristive Nanodevices. , 2014, , 219-256.		1
159	Growth and Capacitance Spectroscopy of Self Assembled Quantum Dots. Materials Research Society Symposia Proceedings, 1995, 417, 221.	0.1	0
160	Transport signatures for correlated disorder in self-assembled InAs quantum dots on GaAs. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 591-594.	1.3	0
161	Tuning nanocrystal properties for quantum information processing. AIP Conference Proceedings, 2005, , .	0.3	0
162	Technical Report: Industrial Research and Innovation at the Brazilian Synchrotron Light Laboratory. Synchrotron Radiation News, 2007, 20, 13-18.	0.2	0

#	Article	IF	CITATIONS
163	PSPhos: PK-Specific Phosphorylation Site Prediction Using Profile SVM. Journal of Computational and Theoretical Nanoscience, 2007, 4, 1324-1329.	0.4	0
164	X-ray analysis of strain, composition and elastic energy in Ge islands on Si(001). International Journal of Nanotechnology, 2008, 5, 1340.	0.1	0
165	Probing microwave capacitance of self-assembled quantum dots. Applied Physics Letters, 2009, 95, 032103.	1.5	0
166	Chemical Nano-tomography of Self-assembled Ge-Si:Si(001) Islands from Quantitative High Resolution Transmission Electron Microscopy. Materials Research Society Symposia Proceedings, 2009, 1184, 111.	0.1	0
167	In-vacuum work function measurement system. , 2016, , .		0
168	Strong Terahertz-Photocurrent Resonances in Miniband Superlattices at the Bloch Frequency. , 1996, , 135-138.		0
169	Metal-insulator transition at B=0 in an AlGaAs/GaAs two-dimensional electron gas under the influence of InAs self-assembled quantum dots. Brazilian Journal of Physics, 1999, 29, 742-745.	0.7	0
170	Opportunities for transition metal oxide devices in solid state random number generators. , 2019, , .		0
171	Control Optimisation Baselines for Tidal Range Structures—CoBaseTRS. Software Impacts, 2022, 14, 100356.	0.8	0