List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478525/publications.pdf Version: 2024-02-01

		4388	6471
302	32,134	86	157
papers	citations	h-index	g-index
323	323	323	12048
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cardiopulmonary Mortality and Fine Particulate Air Pollution by Species and Source in a National U.S. Cohort. Environmental Science & Technology, 2022, 56, 7214-7223.	10.0	21
2	Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels. Atmospheric Chemistry and Physics, 2022, 22, 1131-1148.	4.9	6
3	Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe. Atmospheric Chemistry and Physics, 2022, 22, 1689-1706.	4.9	7
4	Source-resolved variability of fine particulate matter and human exposure in an urban area. Atmospheric Chemistry and Physics, 2022, 22, 2011-2027.	4.9	8
5	A Method for the Measurement of the Water Solubility Distribution of Atmospheric Organic Aerosols. Environmental Science & Technology, 2022, 56, 3952-3959.	10.0	5
6	Insights about the Sources of PM2.5 in an Urban Area from Measurements of a Low-Cost Sensor Network. Atmosphere, 2022, 13, 440.	2.3	13
7	ISORROPIA-Lite: A Comprehensive Atmospheric Aerosol Thermodynamics Module for Earth System Models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 1.	1.6	8
8	Global, high-resolution, reduced-complexity air quality modeling for PM2.5 using InMAP (Intervention) Tj ETQq0 C	0 rgBT /0	verlock 10 T

9	Effects of urban dust emissions on fine and coarse PM levels and composition. Atmospheric Environment, 2021, 246, 118006.	4.1	9
10	α-Pinene, Limonene, and Cyclohexene Secondary Organic Aerosol Hygroscopicity and Oxidation Level as a Function of Volatility. Aerosol and Air Quality Research, 2021, 21, 200511.	2.1	3
11	Size-resolved aerosol pH over Europe during summer. Atmospheric Chemistry and Physics, 2021, 21, 799-811.	4.9	24
12	Simulation of the evolution of biomass burning organic aerosol with different volatility basis set schemes in PMCAMx-SRv1.0. Geoscientific Model Development, 2021, 14, 2041-2055.	3.6	3
13	Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmospheric Chemistry and Physics, 2021, 21, 6023-6033.	4.9	28
14	Organic aerosol volatility and viscosity in the North China Plain: contrast between summer and winter. Atmospheric Chemistry and Physics, 2021, 21, 5463-5476.	4.9	22
15	Historical Changes in Seasonal Aerosol Acidity in the Po Valley (Italy) as Inferred from Fog Water and Aerosol Measurements. Environmental Science & amp; Technology, 2021, 55, 7307-7315.	10.0	9
16	Air quality–related health damages of food. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	70
17	Effect of chemical aging of monoterpene products on biogenic secondary organic aerosol concentrations. Atmospheric Environment, 2021, 254, 118381.	4.1	2
18	Assessing the impact of exposome on the course of chronic obstructive pulmonary disease and cystc fibrosis. Environmental Epidemiology, 2021, 5, e165.	3.0	4

#	Article	IF	CITATIONS
19	Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273.	4.9	20
20	Simulation of the cooking organic aerosol concentration variability in an urban area. Atmospheric Environment, 2021, 265, 118710.	4.1	10
21	From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. Journal of Aerosol Science, 2021, 158, 105833.	3.8	120
22	The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environmental Research Letters, 2021, 16, 103004.	5.2	17
23	Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study. Atmospheric Chemistry and Physics, 2021, 21, 15337-15349.	4.9	10
24	Changes in PM _{2.5} concentrations and their sources in the US from 1990 to 2010. Atmospheric Chemistry and Physics, 2021, 21, 17115-17132.	4.9	9
25	Modeling Biomass Burning Organic Aerosol Atmospheric Evolution and Chemical Aging. Atmosphere, 2021, 12, 1638.	2.3	2
26	Measurement of Formation Rates of Secondary Aerosol in the Ambient Urban Atmosphere Using a Dual Smog Chamber System. Environmental Science & Technology, 2020, 54, 1336-1343.	10.0	22
27	Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley. Science of the Total Environment, 2020, 704, 135287.	8.0	41
28	Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources. Environmental Science and Technology Letters, 2020, 7, 639-645.	8.7	64
29	Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site. Science of the Total Environment, 2020, 748, 141396.	8.0	44
30	Biomass burning organic aerosol from prescribed burning and other activities in the United States. Atmospheric Environment, 2020, 241, 117753.	4.1	4
31	Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmospheric Chemistry and Physics, 2020, 20, 3249-3258.	4.9	72
32	Challenges in determining atmospheric organic aerosol volatility distributions using thermal evaporation techniques. Aerosol Science and Technology, 2020, 54, 941-957.	3.1	8
33	Spatial decomposition analysis of NO2 and PM2.5 air pollution in the United States. Atmospheric Environment, 2020, 241, 117470.	4.1	35
34	Source Apportionment of Fine Organic and Inorganic Atmospheric Aerosol in an Urban Background Area in Greece. Atmosphere, 2020, 11, 330.	2.3	23
35	Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33028-33033.	7.1	63
36	Aerosol light absorption and the role of extremely low volatility organic compounds. Atmospheric Chemistry and Physics, 2020, 20, 11625-11637.	4.9	7

#	Article	IF	CITATIONS
37	Evaluation of Seven Chemical Aging Modeling Schemes with the 2D-VBS Framework Against Ground and Airborne PEGASOS Campaign Measurements. Springer Proceedings in Complexity, 2020, , 371-376.	0.3	0
38	Improving fine aerosol nitrate predictions using a Plume-in-Grid modeling approach. Atmospheric Environment, 2019, 215, 116887.	4.1	5
39	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	4.9	45
40	Positive matrix factorization of organic aerosol: insights from a chemical transport model. Atmospheric Chemistry and Physics, 2019, 19, 973-986.	4.9	9
41	Summertime particulate matter and its composition in Greece. Atmospheric Environment, 2019, 213, 597-607.	4.1	20
42	Simulation of the chemical evolution of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2019, 19, 5403-5415.	4.9	17
43	A portable dual-smog-chamber system for atmospheric aerosol field studies. Atmospheric Measurement Techniques, 2019, 12, 2733-2743.	3.1	16
44	Particle number size distribution statistics at City-Centre Urban Background, urban background, and remote stations in Greece during summer. Atmospheric Environment, 2019, 213, 711-726.	4.1	19
45	Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations. Atmospheric Chemistry and Physics, 2019, 19, 5571-5587.	4.9	23
46	Simulation of fresh and chemically-aged biomass burning organic aerosol. Atmospheric Environment, 2019, 196, 27-37.	4.1	8
47	Physical and Chemical Properties of 3-Methyl-1,2,3-butanetricarboxylic Acid (MBTCA) Aerosol. Environmental Science & Technology, 2018, 52, 1150-1155.	10.0	24
48	Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens. Atmospheric Environment, 2018, 178, 66-72.	4.1	18
49	Multi-generation chemical aging of <i>α</i> -pinene ozonolysis products by reactions with OH. Atmospheric Chemistry and Physics, 2018, 18, 3589-3601.	4.9	17
50	Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol. Atmospheric Environment, 2018, 176, 103-109.	4.1	13
51	Impacts of Future European Emission Reductions on Aerosol Particle Number Concentrations Accounting for Effects of Ammonia, Amines, and Organic Species. Environmental Science & Technology, 2018, 52, 692-700.	10.0	17
52	Simulation of atmospheric organic aerosol using its volatility–oxygen-content distribution during the PEGASOS 2012 campaign. Atmospheric Chemistry and Physics, 2018, 18, 10759-10772.	4.9	3
53	Particle wall-loss correction methods in smog chamber experiments. Atmospheric Measurement Techniques, 2018, 11, 6577-6588.	3.1	50
54	Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation stateÂandÂhygroscopicity. Atmospheric Chemistry and Physics, 2018, 18, 5799-5819.	4.9	22

#	Article	IF	CITATIONS
55	Simulation of the size-composition distribution of atmospheric nanoparticles over Europe. Atmospheric Chemistry and Physics, 2018, 18, 13639-13654.	4.9	14
56	Overprediction of aerosol nitrate by chemical transport models: The role of grid resolution. Atmospheric Environment, 2018, 187, 390-400.	4.1	21
57	An inter-comparison of black-carbon-related instruments in a laboratory study of biomass burning aerosol. Aerosol Science and Technology, 2018, 52, 1320-1331.	3.1	14
58	ORACLE 2-DÂ(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model. Geoscientific Model Development, 2018, 11, 3369-3389.	3.6	24
59	Global distribution of particle phase state in atmospheric secondary organic aerosols. Nature Communications, 2017, 8, 15002.	12.8	295
60	Volatility of source apportioned wintertime organic aerosol in the city of Athens. Atmospheric Environment, 2017, 158, 138-147.	4.1	38
61	Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions. Physical Chemistry Chemical Physics, 2017, 19, 16681-16692.	2.8	18
62	Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 2017, 169, 36-53.	4.1	65
63	Absorption of chemically aged biomass burning carbonaceous aerosol. Journal of Aerosol Science, 2017, 113, 141-152.	3.8	26
64	Volatility-resolved source apportionment of primary and secondary organic aerosol over Europe. Atmospheric Environment, 2017, 167, 1-10.	4.1	9
65	Characterization of fresh and aged organic aerosol emissions fromÂmeat charbroiling. Atmospheric Chemistry and Physics, 2017, 17, 7143-7155.	4.9	58
66	The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 2017, 17, 3145-3163.	4.9	87
67	Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms. Atmospheric Chemistry and Physics, 2017, 17, 7345-7364.	4.9	18
68	A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions. Atmospheric Measurement Techniques, 2017, 10, 4865-4876.	3.1	11
69	Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements. Atmospheric Measurement Techniques, 2017, 10, 3909-3918.	3.1	28
70	Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe. Geoscientific Model Development, 2016, 9, 2741-2754.	3.6	13
71	Measurement of nonvolatile particle number size distribution. Atmospheric Measurement Techniques, 2016, 9, 103-114.	3.1	22
72	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	3.2	1

#	Article	IF	CITATIONS
73	Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.	3.2	0
74	Estimation of the local and long-range contributions to particulate matter levels using continuous measurements in a single urban background site. Atmospheric Environment, 2016, 134, 1-9.	4.1	8
75	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	4.0	182
76	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	3.2	1
77	Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 14825-14842.	4.9	48
78	Volatility of organic aerosol and its components in the megacity of Paris. Atmospheric Chemistry and Physics, 2016, 16, 2013-2023.	4.9	36
79	Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns. Atmospheric Chemistry and Physics, 2016, 16, 3727-3741.	4.9	34
80	Global combustion sources of organic aerosols: model comparison with 84ÂAMS factor-analysis data sets. Atmospheric Chemistry and Physics, 2016, 16, 8939-8962.	4.9	51
81	Urban particulate matter pollution: a tale of five cities. Faraday Discussions, 2016, 189, 277-290.	3.2	27
82	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. Issues in Environmental Science and Technology, 2016, , 35-71.	0.4	5
83	Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements. Geoscientific Model Development, 2016, 9, 4257-4272.	3.6	2
84	Effects of a changing climate on summertime fine particulate matter levels in the eastern U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 5706-5720.	3.3	13
85	Formation and chemical aging of secondary organic aerosol during the β-caryophyllene oxidation. Atmospheric Chemistry and Physics, 2015, 15, 6035-6046.	4.9	46
86	Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions. Atmospheric Chemistry and Physics, 2015, 15, 6305-6322.	4.9	42
87	The role of organic condensation on ultrafine particle growth during nucleation events. Atmospheric Chemistry and Physics, 2015, 15, 6337-6350.	4.9	23
88	Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation. Atmospheric Chemistry and Physics, 2015, 15, 6503-6519.	4.9	193
89	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
90	Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity. Atmospheric Chemistry and Physics, 2015, 15, 8301-8313.	4.9	41

#	Article	IF	CITATIONS
91	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	4.9	92
92	In situ formation and spatial variability of particle number concentration in a European megacity. Atmospheric Chemistry and Physics, 2015, 15, 10219-10237.	4.9	28
93	Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 11355-11371.	4.9	68
94	Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment, 2015, 112, 317-325.	4.1	41
95	Effects of olive tree branches burning emissions on PM2.5 concentrations. Atmospheric Environment, 2015, 112, 148-158.	4.1	8
96	Sources of ultrafine particles in the Eastern United States. Atmospheric Environment, 2015, 111, 103-112.	4.1	32
97	Improvement of simulation of fine inorganic PM levels through better descriptions of coarse particle chemistry. Atmospheric Environment, 2015, 102, 274-281.	4.1	11
98	Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis. Atmospheric Measurement Techniques, 2014, 7, 2953-2965.	3.1	46
99	ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere. Geoscientific Model Development, 2014, 7, 3153-3172.	3.6	60
100	Effect of Ammonia on the Volatility of Organic Diacids. Environmental Science & Technology, 2014, 48, 13769-13775.	10.0	57
101	Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe. Atmospheric Environment, 2014, 87, 175-182.	4.1	23
102	Impact of climate change on mercury concentrations and deposition in the eastern United States. Science of the Total Environment, 2014, 487, 299-312.	8.0	11
103	Contribution of particulate water to the measured aerosol optical properties of aged aerosol. Atmospheric Environment, 2014, 82, 144-153.	4.1	9
104	New Directions: Fundamentals of atmospheric chemistry: Keeping a three-legged stool balanced. Atmospheric Environment, 2014, 84, 390-391.	4.1	32
105	Linking climate and air quality over Europe: effects of meteorology on PM _{2.5} concentrations. Atmospheric Chemistry and Physics, 2014, 14, 10283-10298.	4.9	85
106	Contributions of local and regional sources to fine PM in the megacity of Paris. Atmospheric Chemistry and Physics, 2014, 14, 2343-2352.	4.9	71
107	Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 2014, 14, 4793-4807.	4.9	133
108	A naming convention for atmospheric organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 5825-5839.	4.9	88

#	Article	IF	CITATIONS
109	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	4.9	68
110	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308
111	Sensitivity of Fine PM Levels in Europe to Emissions Changes. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 333-338.	0.2	4
112	Simulating Organic Aerosol Over Europe: Concentration, Chemical Composition and Sources. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 487-491.	0.2	0
113	Atmospheric Aerosol Water-Soluble Organic Carbon Measurement: A Theoretical Analysis. Environmental Science & Technology, 2013, 47, 9791-9798.	10.0	45
114	Atmospheric nanoparticles and climate change. AICHE Journal, 2013, 59, 4006-4019.	3.6	8
115	Introductory lecture: Atmospheric organic aerosols: insights from the combination of measurements and chemical transport models. Faraday Discussions, 2013, 165, 9.	3.2	31
116	Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model. Atmospheric Environment, 2013, 68, 24-32.	4.1	68
117	Characterization of the origin of fine particulate matter in a medium size urban area in the Mediterranean. Atmospheric Environment, 2013, 80, 264-274.	4.1	43
118	Burning of olive tree branches: a major organic aerosol source in the Mediterranean. Atmospheric Chemistry and Physics, 2013, 13, 8797-8811.	4.9	45
119	Particle number concentrations over Europe in 2030: the role of emissions and new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10271-10283.	4.9	12
120	Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmospheric Chemistry and Physics, 2013, 13, 3423-3443.	4.9	119
121	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	4.9	105
122	Modeling the meteorological and chemical effects of secondary organic aerosols during an EUCAARI campaign. Atmospheric Chemistry and Physics, 2013, 13, 625-645.	4.9	66
123	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry, 2013, 10, 151.	1.5	103
124	Diffusion-Limited Versus Quasi-Equilibrium Aerosol Growth. Aerosol Science and Technology, 2012, 46, 874-885.	3.1	61
125	Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. Atmospheric Chemistry and Physics, 2012, 12, 10797-10816.	4.9	79
126	A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics, 2012, 12, 615-634.	4.9	491

#	Article	IF	CITATIONS
127	Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmospheric Chemistry and Physics, 2012, 12, 7285-7293.	4.9	115
128	Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations. Atmospheric Chemistry and Physics, 2012, 12, 8663-8677.	4.9	45
129	Simulations of Smog-Chamber Experiments Using the Two-Dimensional Volatility Basis Set: Linear Oxygenated Precursors. Environmental Science & Technology, 2012, 46, 11179-11186.	10.0	10
130	New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei. Geophysical Research Letters, 2012, 39, .	4.0	54
131	New particle formation at a remote site in the eastern Mediterranean. Journal of Geophysical Research, 2012, 117, .	3.3	50
132	Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmospheric Chemistry and Physics, 2012, 12, 12037-12059.	4.9	285
133	Evaluating the Mixing of Organic Aerosol Components Using High-Resolution Aerosol Mass Spectrometry. Environmental Science & Technology, 2011, 45, 6329-6335.	10.0	44
134	Cloud condensation nuclei activity of isoprene secondary organic aerosol. Journal of Geophysical Research, 2011, 116, .	3.3	73
135	Source–receptor relationships for fine particulate matter concentrations in the Eastern United States. Atmospheric Environment, 2011, 45, 347-356.	4.1	32
136	Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign. Atmospheric Chemistry and Physics, 2011, 11, 10331-10347.	4.9	111
137	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
138	Water content of aged aerosol. Atmospheric Chemistry and Physics, 2011, 11, 911-920.	4.9	116
139	Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2011, 11, 12499-12515.	4.9	44
140	Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2011, 11, 13305-13323.	4.9	30
141	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	4.9	392
142	Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements during MILAGRO. Atmospheric Chemistry and Physics, 2011, 11, 5153-5168.	4.9	48
143	Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmospheric Chemistry and Physics, 2011, 11, 7859-7873.	4.9	80
144	Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8791-8808.	4.9	83

#	Article	IF	CITATIONS
145	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmospheric Chemistry and Physics, 2011, 11, 3303-3318.	4.9	596
146	Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign. Atmospheric Chemistry and Physics, 2011, 11, 3789-3809.	4.9	159
147	Volatility of secondary organic aerosol from the ozonolysis of monoterpenes. Atmospheric Environment, 2011, 45, 2443-2452.	4.1	73
148	Contribution of long range transport to local fine particulate matter concerns. Atmospheric Environment, 2011, 45, 2730-2735.	4.1	41
149	Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles. Atmospheric Environment, 2011, 45, 3132-3140.	4.1	24
150	Predicted changes in summertime organic aerosol concentrations due to increased temperatures. Atmospheric Environment, 2011, 45, 6546-6556.	4.1	26
151	Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008). Atmospheric Chemistry and Physics, 2010, 10, 12149-12160.	4.9	81
152	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008. Atmospheric Chemistry and Physics, 2010, 10, 4167-4186.	4.9	132
153	The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08): an overview. Atmospheric Chemistry and Physics, 2010, 10, 6793-6806.	4.9	61
154	Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. Atmospheric Environment, 2010, 44, 597-607.	4.1	152
155	Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity. Atmospheric Environment, 2010, 44, 608-620.	4.1	63
156	Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States. Atmospheric Environment, 2010, 44, 3952-3962.	4.1	51
157	Simulation of in situ ultrafine particle formation in the eastern United States using PMCAMxâ€UF. Journal of Geophysical Research, 2010, 115, .	3.3	60
158	Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol. Journal of Geophysical Research, 2010, 115,	3.3	145
159	Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments. Geophysical Research Letters, 2010, 37, .	4.0	46
160	Exploring summertime organic aerosol formation in the eastern United States using a regionalâ€scale budget approach and ambient measurements. Journal of Geophysical Research, 2010, 115, .	3.3	53
161	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. Bulletin of the American Meteorological Society, 2009, 90, 1843-1864.	3.3	175
162	Atmospheric organic particulate matter: From smoke to secondary organic aerosol. Atmospheric Environment, 2009, 43, 94-106.	4.1	348

#	Article	IF	CITATIONS
163	Simulating the Formation of Semivolatile Primary and Secondary Organic Aerosol in a Regional Chemical Transport Model. Environmental Science & Technology, 2009, 43, 4722-4728.	10.0	212
164	Mass Spectra Deconvolution of Low, Medium, and High Volatility Biogenic Secondary Organic Aerosol. Environmental Science & Technology, 2009, 43, 4884-4889.	10.0	84
165	Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates. Journal of Aerosol Science, 2009, 40, 385-393.	3.8	34
166	Determination of the age distribution of primary and secondary aerosol species using a chemical transport model. Journal of Geophysical Research, 2009, 114, .	3.3	32
167	Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology. Journal of Geophysical Research, 2009, 114, .	3.3	53
168	Corrigendum to "Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales" published in Atmos. Chem. Phys., 9, 2825–2841, 2009. Atmospheric Chemistry and Physics, 2009, 9, 3443-3444.	4.9	2
169	Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2009, 9, 2825-2841.	4.9	196
170	High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmospheric Chemistry and Physics, 2009, 9, 2973-2986.	4.9	261
171	Parameterization of secondary organic aerosol mass fractions from smog chamber data. Atmospheric Environment, 2008, 42, 2276-2299.	4.1	79
172	Simulating present-day and future air quality as climate changes: Model evaluation. Atmospheric Environment, 2008, 42, 4551-4566.	4.1	30
173	Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model. Atmospheric Environment, 2008, 42, 5650-5659.	4.1	164
174	Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmospheric Environment, 2008, 42, 7439-7451.	4.1	284
175	Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. Journal of Geophysical Research, 2008, 113, .	3.3	220
176	Response of Fine Particulate Matter to Emission Changes of Oxides of Nitrogen and Anthropogenic Volatile Organic Compounds in the Eastern United States. Journal of the Air and Waste Management Association, 2008, 58, 1463-1473.	1.9	39
177	Ozonolysis of β-Pinene: Temperature Dependence of Secondary Organic Aerosol Mass Fraction. Environmental Science & Technology, 2008, 42, 5081-5086.	10.0	38
178	Effect of NO _{<i>x</i>} on Secondary Organic Aerosol Concentrations. Environmental Science & Technology, 2008, 42, 6022-6027.	10.0	135
179	Individual Particle Morphology and Acidity. Aerosol Science and Technology, 2008, 42, 224-232.	3.1	14
180	Evaluation of Nucleation Theories in a Sulfur-Rich Environment. Aerosol Science and Technology, 2008, 42, 495-504.	3.1	47

#	Article	IF	CITATIONS
181	Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements. Aerosol Science and Technology, 2008, 42, 1001-1015.	3.1	90
182	Sensitivity of PM _{2.5} to climate in the Eastern US: a modeling case study. Atmospheric Chemistry and Physics, 2007, 7, 4295-4309.	4.9	273
183	An Algorithm for the Calculation of Secondary Organic Aerosol Density Combining AMS and SMPS Data. Aerosol Science and Technology, 2007, 41, 1002-1010.	3.1	158
184	Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol. Journal of Aerosol Science, 2007, 38, 305-314.	3.8	201
185	Measurements of the Volatility of Aerosols from α-Pinene Ozonolysis. Environmental Science & Technology, 2007, 41, 2756-2763.	10.0	114
186	Efflorescence Transitions of Ammonium Sulfate Particles Coated with Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 2289-2295.	10.0	28
187	Predicted Secondary Organic Aerosol Concentrations from the Oxidation of Isoprene in the Eastern United States. Environmental Science & Technology, 2007, 41, 3984-3990.	10.0	26
188	Ammonia Emission Controls as a Cost-Effective Strategy for Reducing Atmospheric Particulate Matter in the Eastern United States. Environmental Science & amp; Technology, 2007, 41, 380-386.	10.0	251
189	Response of Inorganic Fine Particulate Matter to Emission Changes of Sulfur Dioxide and Ammonia: The Eastern United States as a Case Study. Journal of the Air and Waste Management Association, 2007, 57, 1489-1498.	1.9	81
190	Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science, 2007, 315, 1259-1262.	12.6	1,679
191	Ozonolysis ofα-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields). Journal of Geophysical Research, 2007, 112, .	3.3	175
192	Evaluation of a threeâ€dimensional chemical transport model (PMCAMx) in the eastern United States for all four seasons. Journal of Geophysical Research, 2007, 112, .	3.3	66
193	Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmospheric Environment, 2007, 41, 1494-1511.	4.1	182
194	Development and application of a three-dimensional aerosol chemical transport model, PMCAMx. Atmospheric Environment, 2007, 41, 2594-2611.	4.1	105
195	Source contributions to primary organic aerosol: Comparison of the results of a source-resolved model and the chemical mass balance approach. Atmospheric Environment, 2007, 41, 3758-3776.	4.1	46
196	Regional Air Qualityâ \in "Atmospheric Nucleation Interactions. , 2007, , 871-877.		2
197	Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs. Journal of Geophysical Research, 2006, 111, .	3.3	95
198	Coupled Partitioning, Dilution, and Chemical Aging of Semivolatile Organics. Environmental Science & Technology, 2006, 40, 2635-2643.	10.0	1,301

#	Article	IF	CITATIONS
199	Semicontinuous Measurements of Organic Carbon and Acidity during the Pittsburgh Air Quality Study:Â Implications for Acid-Catalyzed Organic Aerosol Formation. Environmental Science & Technology, 2006, 40, 2191-2199.	10.0	48
200	Secondary Organic Aerosol Formation from Limonene Ozonolysis:Â Homogeneous and Heterogeneous Influences as a Function of NOx. Journal of Physical Chemistry A, 2006, 110, 11053-11063.	2.5	146
201	Cloud condensation nuclei activation of limited solubility organic aerosol. Atmospheric Environment, 2006, 40, 605-617.	4.1	123
202	Simulating the size distribution and chemical composition of ultrafine particles during nucleation events. Atmospheric Environment, 2006, 40, 2248-2259.	4.1	73
203	Local and Regional Secondary Organic Aerosol: Insights from a Year of Semi-Continuous Carbon Measurements at Pittsburgh. Aerosol Science and Technology, 2006, 40, 861-872.	3.1	104
204	The influence of size-dependent droplet composition on pollutant processing by fogs. Atmospheric Environment, 2005, 39, 4561-4574.	4.1	49
205	Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study. Faraday Discussions, 2005, 130, 295.	3.2	97
206	In situ concentration of semi-volatile aerosol using water-condensation technology. Journal of Aerosol Science, 2005, 36, 866-880.	3.8	45
207	Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. Journal of Geophysical Research, 2005, 110, .	3.3	168
208	Water content of ambient aerosol during the Pittsburgh Air Quality Study. Journal of Geophysical Research, 2005, 110, .	3.3	85
209	Modeling of in situ ultrafine atmospheric particle formation in the eastern United States. Journal of Geophysical Research, 2005, 110, .	3.3	68
210	Mining airborne particulate size distribution data by positive matrix factorization. Journal of Geophysical Research, 2005, 110, .	3.3	23
211	Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5control strategies. Journal of Geophysical Research, 2005, 110, .	3.3	46
212	Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. Journal of Geophysical Research, 2005, 110, .	3.3	37
213	Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	103
214	Preface to special section on Particulate Matter Supersites. Journal of Geophysical Research, 2005, 110,	3.3	3
215	APPLICATION OF A THREE-DIMENSIONAL CHEMICAL TRANSPORT MODEL (PMCAMX+) TO MODEL SUMMER AND WINTER PM IN THE EASTERN UNITED STATES. Journal of Aerosol Science, 2004, 35, S893-S894.	3.8	0
216	Spatial Variations of PM2.5During the Pittsburgh Air Quality Study. Aerosol Science and Technology, 2004, 38, 80-90.	3.1	45

#	Article	IF	CITATIONS
217	Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study. Atmospheric Environment, 2004, 38, 3201-3213.	4.1	63
218	Pittsburgh air quality study overview. Atmospheric Environment, 2004, 38, 3107-3125.	4.1	117
219	Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmospheric Environment, 2004, 38, 3127-3141.	4.1	159
220	Mass balance closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmospheric Environment, 2004, 38, 3305-3318.	4.1	98
221	Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmospheric Environment, 2004, 38, 3275-3284.	4.1	232
222	Nucleation Events During the Pittsburgh Air Quality Study: Description and Relation to Key Meteorological, Gas Phase, and Aerosol Parameters Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 253-264.	3.1	263
223	A Method for the In Situ Measurement of Fine Aerosol Water Content of Ambient Aerosols: The Dry-Ambient Aerosol Size Spectrometer (DAASS) Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 215-228.	3.1	61
224	Advanced Factor Analysis on Pittsburgh Particle Size-Distribution Data Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 118-132.	3.1	107
225	An Algorithm for Combining Electrical Mobility and Aerodynamic Size Distributions Data when Measuring Ambient Aerosol Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 229-238.	3.1	200
226	Estimating the Secondary Organic Aerosol Contribution to PM2.5Using the EC Tracer Method Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 2004, 38, 140-155.	3.1	245
227	Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry. Environmental Science & Technology, 2004, 38, 4797-4809.	10.0	259
228	Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID). Journal of Geophysical Research, 2004, 109, .	3.3	184
229	Modeling the diurnal variation of nitrate during the Pittsburgh Air Quality Study. Journal of Geophysical Research, 2004, 109, .	3.3	61
230	Light scattering by fine particles during the Pittsburgh Air Quality Study: Measurements and modeling. Journal of Geophysical Research, 2004, 109, .	3.3	47
231	Development and application of an efficient moving sectional approach for the solution of the atmospheric aerosol condensation/evaporation equations. Atmospheric Environment, 2003, 37, 3303-3316.	4.1	82
232	Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmospheric Environment, 2003, 37, 4757-4768.	4.1	129
233	Formation of cloud droplets by multicomponent organic particles. Journal of Geophysical Research, 2003, 108, .	3.3	127
234	Sizeâ€resolved aqueousâ€phase atmospheric chemistry in a threeâ€dimensional chemical transport model. Journal of Geophysical Research, 2003, 108, .	3.3	27

#	Article	IF	CITATIONS
235	Uncertainties in Modeling Secondary Organic Aerosols:Â Three-Dimensional Modeling Studies in Nashville/Western Tennessee. Environmental Science & Technology, 2003, 37, 3647-3661.	10.0	116
236	Evaluation of the Equilibrium, Dynamic, and Hybrid Aerosol Modeling Approaches. Aerosol Science and Technology, 2003, 37, 53-64.	3.1	40
237	Effects of Sampling Conditions on the Size Distribution of Fine Particulate Matter Emitted from a Pilot-Scale Pulverized-Coal Combustor. Energy & Fuels, 2002, 16, 302-310.	5.1	54
238	Cloud activation of single-component organic aerosol particles. Journal of Geophysical Research, 2002, 107, AAC 16-1.	3.3	187
239	Sources of Atmospheric Carbonaceous Particulate Matter in Pittsburgh, Pennsylvania. Journal of the Air and Waste Management Association, 2002, 52, 732-741.	1.9	84
240	Is the size distribution of urban aerosols determined by thermodynamic equilibrium?. Atmospheric Environment, 2002, 36, 2349-2365.	4.1	79
241	Gas/aerosol partitioning: 1. A computationally efficient model. Journal of Geophysical Research, 2002, 107, ACH 16-1.	3.3	185
242	The Role of Variable Droplet Size-Resolution in Aqueous-Phase Atmospheric Chemistry Modeling. , 2002, , 422-430.		1
243	Evaluation of the Equilibrium, Dynamic, and Hybrid Aerosol Modeling Approaches in a One-Dimensional Lagrangian Trajectory Model. , 2002, , 289-297.		0
244	Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of α- and β-Pinene. Environmental Science & Technology, 2001, 35, 3344-3349.	10.0	157
245	Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA-AVER study in Mexico City. Atmospheric Environment, 2001, 35, 1791-1804.	4.1	72
246	Optimizing model performance: variable size resolution in cloud chemistry modeling. Atmospheric Environment, 2001, 35, 4471-4478.	4.1	158
247	Organic aerosols as cloud condensation nuclei. AIP Conference Proceedings, 2000, , .	0.4	0
248	A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmospheric Environment, 2000, 34, 3617-3627.	4.1	148
249	The effect of dioctyl phthalate films on the ammonium nitrate aerosol evaporation rate. Atmospheric Environment, 2000, 34, 3897-3905.	4.1	36
250	The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases. Atmospheric Environment, 2000, 34, 157-168.	4.1	78
251	Evaporation rates of α-pinene photooxidation aerosol products. Journal of Aerosol Science, 2000, 31, 174-175.	3.8	1
252	Deliquescence and Hygroscopic Growth of Mixed Inorganicâ^'Organic Atmospheric Aerosol. Environmental Science & Technology, 2000, 34, 4313-4319.	10.0	373

#	Article	IF	CITATIONS
253	Water Absorption by Secondary Organic Aerosol and Its Effect on Inorganic Aerosol Behavior. Environmental Science & Technology, 2000, 34, 71-77.	10.0	116
254	MADM-A New Multicomponent Aerosol Dynamics Model. Aerosol Science and Technology, 2000, 32, 482-502.	3.1	118
255	Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer?. Geophysical Research Letters, 2000, 27, 2229-2232.	4.0	75
256	Marginal PM ₂₅ : Nonlinear Aerosol Mass Response to Sulfate Reductions in the Eastern United States. Journal of the Air and Waste Management Association, 1999, 49, 1415-1424.	1.9	96
257	Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature, 1999, 400, 743-746.	27.8	300
258	Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmospheric Environment, 1999, 33, 745-757.	4.1	144
259	Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmospheric Environment, 1999, 33, 1553-1560.	4.1	314
260	The mass accommodation coefficient of ammonium nitrate aerosol. Atmospheric Environment, 1999, 33, 2993-3003.	4.1	79
261	Production and removal of aerosol in a polluted fog layer: model evaluation and fog effect on PM. Atmospheric Environment, 1999, 33, 4797-4816.	4.1	38
262	The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmospheric Environment, 1999, 33, 4817-4832.	4.1	67
263	Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment, 1999, 33, 4849-4863.	4.1	429
264	Condensation of Organic Vapors on an Externally Mixed Aerosol Population. Aerosol Science and Technology, 1999, 31, 392-407.	3.1	16
265	Global nitrogen and sulfur inventories for oceangoing ships. Journal of Geophysical Research, 1999, 104, 3457-3470.	3.3	304
266	Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations?. Journal of Geophysical Research, 1999, 104, 3483-3500.	3.3	47
267	An Analysis of Four Models Predicting the Partitioning of Semivolatile Inorganic Aerosol Components. Aerosol Science and Technology, 1999, 31, 129-153.	3.1	75
268	ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquatic Geochemistry, 1998, 4, 123-152.	1.3	1,146
269	Marginal direct climate forcing by atmospheric aerosols. Atmospheric Environment, 1998, 32, 2531-2542.	4.1	32
270	Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (â^¼3–10nm) size distributions. Journal of Aerosol Science, 1998, 29, 601-615.	3.8	55

#	Article	IF	CITATIONS
271	Response of Inorganic PM to Precursor Concentrations. Environmental Science & Technology, 1998, 32, 2706-2714.	10.0	234
272	The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. Journal of Geophysical Research, 1998, 103, 13111-13123.	3.3	186
273	Dimethylsulfide chemistry in the remote marine atmosphere: Evaluation and sensitivity analysis of available mechanisms. Journal of Geophysical Research, 1997, 102, 23251-23267.	3.3	59
274	Formation and properties of secondary atmospheric aerosol: from the laboratory to the supercomputer. Journal of Aerosol Science, 1997, 28, S367-S370.	3.8	2
275	Effect of composition variations in cloud droplet populations on aqueous-phase chemistry. Journal of Geophysical Research, 1997, 102, 9375-9385.	3.3	48
276	A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei. Atmospheric Environment, 1997, 31, 2205-2214.	4.1	277
277	Modelling urban and regional aerosols—II. Application to California's South Coast Air Basin. Atmospheric Environment, 1997, 31, 2695-2715.	4.1	140
278	Mathematical model for gas-particle partitioning of secondary organic aerosols. Atmospheric Environment, 1997, 31, 3921-3931.	4.1	157
279	Dynamics of Tropospheric Aerosols. The Journal of Physical Chemistry, 1995, 99, 9646-9659.	2.9	170
280	A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland. Geophysical Research Letters, 1995, 22, 3517-3520.	4.0	15
281	Reply [to "Comment on â€~The relationship between DMS flux and CCN concentration in remote marine regions' by S. N. Pandis, L. M. Russell, and J. H. Seinfeldâ€]. Journal of Geophysical Research, 1995, 100, 14357.	3.3	10
282	Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. Journal of Geophysical Research, 1995, 100, 18739.	3.3	319
283	Physical, Chemical and Optical Properties of Atmospheric Aerosols. Handbook of Environmental Chemistry, 1995, , 99-124.	0.4	7
284	In Situ Particle Formation/Reaction Mechanisms. Handbook of Environmental Chemistry, 1995, , 35-67.	0.4	1
285	The relationship between DMS flux and CCN concentration in remote marine regions. Journal of Geophysical Research, 1994, 99, 16945.	3.3	155
286	Aerosol production and growth in the marine boundary layer. Journal of Geophysical Research, 1994, 99, 20989.	3.3	152
287	Tropospheric Chemistry. Advances in Chemical Engineering, 1994, , 325-407.	0.9	13
288	Fourier transform infrared analysis of aerosol formed in the photooxidation of 1-octene. Atmospheric Environment Part A General Topics, 1993, 27, 1471-1477.	1.3	29

#	Article	IF	CITATIONS
289	Secondary organic aerosol formation and transport — II. Predicting the ambient secondary organic aerosol size distribution. Atmospheric Environment Part A General Topics, 1993, 27, 2403-2416.	1.3	143
290	Heterogeneous sulfate production in an urban fog. Atmospheric Environment Part A General Topics, 1992, 26, 2509-2522.	1.3	64
291	Fourier transform infrared analysis of aerosol formed in the photo-oxidation of isoprene and β-pinene. Atmospheric Environment Part A General Topics, 1992, 26, 1239-1251.	1.3	74
292	Secondary organic aerosol formation and transport. Atmospheric Environment Part A General Topics, 1992, 26, 2269-2282.	1.3	485
293	Reply [to "Comment [on "Should bulk cloudwater or fogwater samples obey Henry's law?―by S. N. Pandis and J. H. Seinfeld]â€]. Journal of Geophysical Research, 1992, 97, 6079-6081.	3.3	4
294	Aerosol formation in the photooxidation of isoprene and β-pinene. Atmospheric Environment Part A General Topics, 1991, 25, 997-1008.	1.3	278
295	Inversion of aerosol data from the epiphaniometer. Journal of Aerosol Science, 1991, 22, 417-428.	3.8	63
296	Should bulk cloudwater or fogwater samples obey Henry's law?. Journal of Geophysical Research, 1991, 96, 10791-10798.	3.3	57
297	Chemical composition differences in fog and cloud droplets of different sizes. Atmospheric Environment Part A General Topics, 1990, 24, 1957-1969.	1.3	95
298	On the interaction between equilibration processes and wet or dry deposition. Atmospheric Environment Part A General Topics, 1990, 24, 2313-2327.	1.3	20
299	The smogâ€fogâ€smog cycle and acid deposition. Journal of Geophysical Research, 1990, 95, 18489-18500.	3.3	55
300	Characterization of photochemical aerosols from biogenic hydrocarbons. Journal of Aerosol Science, 1990, 21, S245-S248.	3.8	23
301	Mathematical modeling of acid deposition due to radiation fog. Journal of Geophysical Research, 1989, 94, 12911-12923.	3.3	70
302	Sensitivity analysis of a chemical mechanism for aqueousâ€phase atmospheric chemistry. Journal of Geophysical Research, 1989, 94, 1105-1126.	3.3	374