Karen M Neilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478500/publications.pdf Version: 2024-02-01

KADEN M NEUSON

#	Article	IF	CITATIONS
1	Mcrs1 is required for branchial arch and cranial cartilage development. Developmental Biology, 2022, 489, 62-75.	2.0	3
2	Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. Development (Cambridge), 2021, 148, .	2.5	10
3	Mcrs1 interacts with Six1 to influence early craniofacial and otic development. Developmental Biology, 2020, 467, 39-50.	2.0	14
4	Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	31
5	Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. Developmental Biology, 2019, 446, 68-79.	2.0	20
6	Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. Developmental Biology, 2017, 421, 171-182.	2.0	28
7	Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. Developmental Biology, 2017, 429, 213-224.	2.0	3
8	Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis, 2016, 54, 334-349.	1.6	19
9	Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Developmental Dynamics, 2015, 244, 181-210.	1.8	20
10	Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 178, 16-24.	2.6	16
11	Novel Coâ€factors for the Vertebrate Six1 Transcription Factor are Candidates for Branchiootorenal Spectrum Disorders. FASEB Journal, 2015, 29, 873.3.	0.5	0
12	Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. Developmental Biology, 2012, 365, 363-375.	2.0	26
13	Early gene interactions that discriminate among the four ectodermal domains in the embryonic head. FASEB Journal, 2011, 25, 485.1.	0.5	0
14	Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors. Developmental Dynamics, 2010, 239, 3446-3466.	1.8	29
15	Notch signaling downstream of <i>foxD5</i> promotes neural ectodermal transcription factors that inhibit neural differentiation. Developmental Dynamics, 2009, 238, 1358-1365.	1.8	14
16	foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Developmental Biology, 2009, 329, 80-95.	2.0	62
17	Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. Developmental Biology, 2008, 320, 199-214.	2.0	100