Huilin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478483/publications.pdf

Version: 2024-02-01

		76196	82410
103	6,025	40	72
papers	citations	h-index	g-index
118	118	118	5476
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pseudomonas aeruginosa C-Terminal Processing Protease CtpA Assembles into a Hexameric Structure That Requires Activation by a Spiral-Shaped Lipoprotein-Binding Partner. MBio, 2022, 13, e0368021.	1.8	7
2	Structure and electron transfer pathways of an electron-bifurcating NiFe-hydrogenase. Science Advances, 2022, 8, eabm7546.	4.7	15
3	Structure of the human GlcNAc-1-phosphotransferase $\hat{l}\pm\hat{l}^2$ subunits reveals regulatory mechanism for lysosomal enzyme glycan phosphorylation. Nature Structural and Molecular Biology, 2022, 29, 348-356.	3.6	6
4	DNA is loaded through the 9-1-1 DNA checkpoint clamp in the opposite direction of the PCNA clamp. Nature Structural and Molecular Biology, 2022, 29, 376-385.	3.6	19
5	Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature, 2022, 604, 127-133.	13.7	29
6	Evolution of complex l–like respiratory complexes. Journal of Biological Chemistry, 2021, 296, 100740.	1.6	14
7	The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. Journal of Biological Chemistry, 2021, 296, 100713.	1.6	4
8	Water skating: How polymerase sliding clamps move on DNA. FEBS Journal, 2021, 288, 7256-7262.	2.2	8
9	Cryoâ€EM structures of the endoplasmic reticulum membrane complex. FEBS Journal, 2021, , .	2.2	9
10	Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Reports, 2021, 35, 109166.	2.9	13
11	Macrocyclic Peptides that Selectively Inhibit the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2021, 64, 6262-6272.	2.9	9
12	Protein N-glycosylation and O-mannosylation are catalyzed by two evolutionarily related GT-C glycosyltransferases. Current Opinion in Structural Biology, 2021, 68, 66-73.	2.6	5
13	The structure of ORC–Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nature Communications, 2021, 12, 3883.	5.8	28
14	Novel autoantibodies to the \hat{I}^2 -cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. Journal of Autoimmunity, 2021, 122, 102677.	3.0	11
15	Processive dynamics of the usher assembly platform during uropathogenic Escherichia coli P pilus biogenesis. Nature Communications, 2021, 12, 5207.	5 . 8	11
16	Recent Progress in Structural Studies on the GT-C Superfamily of Protein Glycosyltransferases. Sub-Cellular Biochemistry, 2021, 96, 259-271.	1.0	7
17	Cryoelectron microscopy structure and mechanism of the membrane-associated electron-bifurcating flavoprotein Fix/EtfABCX. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
18	Structural basis of the P4B ATPase lipid flippase activity. Nature Communications, 2021, 12, 5963.	5.8	14

#	Article	IF	CITATIONS
19	Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nature Communications, 2021, 12, 6439.	5.8	41
20	Evolution of DNA replication origin specification and gene silencing mechanisms. Nature Communications, 2020, 11, 5175.	5.8	16
21	Structural mechanism of helicase loading onto replication origin DNA by ORC-Cdc6. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17747-17756.	3.3	41
22	Structure of eukaryotic DNA polymerase \hat{l}' bound to the PCNA clamp while encircling DNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30344-30353.	3.3	41
23	Structure of the respiratory MBS complex reveals iron-sulfur cluster catalyzed sulfane sulfur reduction in ancient life. Nature Communications, 2020, 11, 5953.	5.8	26
24	Structure of the ER membrane complex, a transmembrane-domain insertase. Nature, 2020, 584, 475-478.	13.7	102
25	Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Nature Communications, 2020, 11, 3156.	5.8	57
26	Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials, 2020, 19, 789-796.	13.3	172
27	DNA unwinding mechanism of a eukaryotic replicative CMG helicase. Nature Communications, 2020, 11, 688.	5.8	50
28	Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochemical Journal, 2020, 477, 3499-3525.	1.7	11
29	Anatomy of a twin DNA replication factory. Biochemical Society Transactions, 2020, 48, 2769-2778.	1.6	8
30	Transport mechanism of P4 ATPase phosphatidylcholine flippases. ELife, 2020, 9, .	2.8	40
31	Structure of the eukaryotic protein O-mannosyltransferase Pmt1â^'Pmt2 complex. Nature Structural and Molecular Biology, 2019, 26, 704-711.	3.6	38
32	Cryo-EM Studies of Respiratory Complexes in a Hyperthermophilic Archaeon Pyrococcus furiosus Suggest an Evolutionary Path to Modern-Day Complex I. Microscopy and Microanalysis, 2019, 25, 1354-1355.	0.2	0
33	Identification of Fatty Acid Binding Protein 5 Inhibitors Through Similarity-Based Screening. Biochemistry, 2019, 58, 4304-4316.	1.2	14
34	Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p. Nature Communications, 2019, 10, 4142.	5.8	51
35	Selective Phenylimidazole-Based Inhibitors of the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2019, 62, 9246-9253.	2.9	14
36	Characterization of Guided Entry of Tail-Anchored Proteins 3 Homologues in Mycobacterium tuberculosis. Journal of Bacteriology, 2019, 201, .	1.0	4

#	Article	IF	Citations
37	Mathematical description of eukaryotic chromosome replication. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4776-4778.	3.3	O
38	DNA replication from two different worlds. Science, 2019, 363, 814-815.	6.0	2
39	Cryoâ€ <scp>EM</scp> is uncovering the mechanism of eukaryotic protein Nâ€glycosylation. FEBS Journal, 2019, 286, 1638-1644.	2.2	16
40	Biology and Biochemistry of Bacterial Proteasomes. Sub-Cellular Biochemistry, 2019, 93, 339-358.	1.0	5
41	Ctf4 organizes sister replisomes and Pol $\hat{l}\pm$ into a replication factory. ELife, 2019, 8, .	2.8	42
42	Proteasome substrate capture and gate opening by the accessory factor PafE from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2018, 293, 4713-4723.	1.6	15
43	The ring-shaped hexameric helicases that function at DNA replication forks. Nature Structural and Molecular Biology, 2018, 25, 122-130.	3.6	78
44	The Eukaryotic CMG Helicase at the Replication Fork: Emerging Architecture Reveals an Unexpected Mechanism. BioEssays, 2018, 40, 1700208.	1.2	66
45	The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature, 2018, 555, 328-333.	13.7	97
46	ATP hydrolysis-coupled peptide translocation mechanism of <i>Mycobacterium tuberculosis</i> ClpB. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9560-E9569.	3.3	72
47	Handover mechanism of the growing pilus by the bacterial outer-membrane usher FimD. Nature, 2018, 562, 444-447.	13.7	21
48	Highly specific monoclonal antibodies for allosteric inhibition and immunodetection of the human pancreatic zinc transporter ZnT8. Journal of Biological Chemistry, 2018, 293, 16206-16216.	1.6	11
49	SAR studies on truxillic acid mono esters as a new class of antinociceptive agents targeting fatty acid binding proteins. European Journal of Medicinal Chemistry, 2018, 154, 233-252.	2.6	31
50	Structure of an Ancient Respiratory System. Cell, 2018, 173, 1636-1649.e16.	13.5	92
51	Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E697-E706.	3.3	176
52	<i>Mycobacterium tuberculosis</i> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates. MBio, 2017, 8, .	1.8	21
53	Structural basis of Mcm2–7 replicative helicase loading by ORC–Cdc6 and Cdt1. Nature Structural and Molecular Biology, 2017, 24, 316-324.	3.6	130
54	Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2). Journal of Bacteriology, 2017, 199, .	1.0	3

#	Article	IF	CITATIONS
55	<i>Mycobacterium tuberculosis</i> proteasomal ATPase Mpa has a βâ€grasp domain that hinders docking with the proteasome core protease. Molecular Microbiology, 2017, 105, 227-241.	1.2	21
56	The Antinociceptive Agent SBFI-26 Binds to Anandamide Transporters FABP5 and FABP7 at Two Different Sites. Biochemistry, 2017, 56, 3454-3462.	1.2	31
57	Fatty-acid-binding protein inhibition produces analgesic effects through peripheral and central mechanisms. Molecular Pain, 2017, 13, 174480691769700.	1.0	31
58	Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the <i>Mycobacterium tuberculosis</i> Proteasome. Biochemistry, 2017, 56, 324-333.	1,2	14
59	Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9529-E9538.	3.3	76
60	Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Scientific Reports, 2017, 7, 13648.	1.6	39
61	O-Glycosylation modulates the stability of epidermal growth factor-like repeats and thereby regulates Notch trafficking. Journal of Biological Chemistry, 2017, 292, 15964-15973.	1.6	82
62	Cryoâ€EM of dynamic protein complexes in eukaryotic DNA replication. Protein Science, 2017, 26, 40-51.	3.1	3
63	Architecture of the Saccharomyces cerevisiae Replisome. Advances in Experimental Medicine and Biology, 2017, 1042, 207-228.	0.8	20
64	Structure of the active form of human origin recognition complex and its ATPase motor module. ELife, $2017, 6, .$	2.8	44
65	The Eukaryotic Replisome Goes Under the Microscope. Current Biology, 2016, 26, R247-R256.	1.8	32
66	Structural analysis of the dodecameric proteasome activator PafE in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1983-92.	3.3	21
67	The eukaryotic CMG helicase pumpjack and integration into the replisome. Nucleus, 2016, 7, 146-154.	0.6	11
68	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016, 15, 654-661.	13.3	198
69	Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nature Structural and Molecular Biology, 2016, 23, 217-224.	3.6	130
70	Diamond family of nanoparticle superlattices. Science, 2016, 351, 582-586.	6.0	331
71	The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nature Structural and Molecular Biology, 2015, 22, 540-546.	3.6	27
72	An adenosine triphosphate-independent proteasome activator contributes to the virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1763-72.	3.3	40

#	Article	IF	CITATIONS
73	Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology, 2015, 11, 847-854.	3.9	60
74	The architecture of a eukaryotic replisome. Nature Structural and Molecular Biology, 2015, 22, 976-982.	3.6	161
75	Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication. ELife, 2015, 4, .	2.8	30
76	Crystallographic study of FABP5 as an intracellular endocannabinoid transporter. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 290-298.	2.5	44
77	A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2–7 onto DNA. Genes and Development, 2014, 28, 1653-1666.	2.7	105
78	Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Genes and Development, 2014, 28, 2291-2303.	2.7	96
79	Cryo-EM structure of a helicase loading intermediate containing ORC–Cdc6–Cdt1–MCM2-7 bound to DNA. Nature Structural and Molecular Biology, 2013, 20, 944-951.	3.6	122
80	The Pup-Proteasome System of Mycobacterium tuberculosis. Sub-Cellular Biochemistry, 2013, 66, 267-295.	1.0	26
81	The Origin Recognition Complex: A Biochemical and Structural View. Sub-Cellular Biochemistry, 2012, 62, 37-58.	1.0	42
82	Cdc6-Induced Conformational Changes in ORC Bound to Origin DNA Revealed by Cryo-Electron Microscopy. Structure, 2012, 20, 534-544.	1.6	60
83	Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature, 2011, 474, 49-53.	13.7	170
84	Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nature Structural and Molecular Biology, 2010, 17, 1352-1357.	3.6	109
85	Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO Journal, 2010, 29, 2037-2047.	3.5	38
86	Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10872-10877.	3.3	69
87	"Depupylation―of Prokaryotic Ubiquitin-like Protein from Mycobacterial Proteasome Substrates. Molecular Cell, 2010, 39, 821-827.	4. 5	110
88	Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome. Archives of Biochemistry and Biophysics, 2010, 501, 214-220.	1.4	57
89	Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6945-6949.	3.3	56
90	A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20240-20245.	3.3	465

#	Article	IF	CITATIONS
91	Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure, 2009, 17, 1377-1385.	1.6	65
92	Inhibitors selective for mycobacterial versus human proteasomes. Nature, 2009, 461, 621-626.	13.7	213
93	Structure of the Oligosaccharyl Transferase Complex at 12 Ã Resolution. Structure, 2008, 16, 432-440.	1.6	45
94	Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway. Cell, 2008, 133, 640-652.	13.5	194
95	The architecture of the DNA replication origin recognition complex in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 10326-10331.	3.3	70
96	Mycobacterium tuberculosis prcBAgenes encode a gated proteasome with broad oligopeptide specificity. Molecular Microbiology, 2006, 59, 1405-1416.	1.2	98
97	Structure of theMycobacterium tuberculosisproteasome and mechanism of inhibition by a peptidyl boronate. Molecular Microbiology, 2006, 59, 1417-1428.	1.2	120
98	ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nature Structural and Molecular Biology, 2005, 12, 965-971.	3.6	198
99	Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Molecular Microbiology, 2004, 55, 561-571.	1.2	119
100	The Outer Membrane Usher Forms a Twin-pore Secretion Complex. Journal of Molecular Biology, 2004, 344, 1397-1407.	2.0	67
101	A transmission electron microscopy study of ferroelectric domains in a modified lead zirconate titanate ceramic. Journal of Physics Condensed Matter, 1993, 5, 5037-5044.	0.7	0
102	An Abundant and Diverse New Family of Electron Bifurcating Enzymes With a Non-canonical Catalytic Mechanism. Frontiers in Microbiology, 0, 13 , .	1.5	9
103	Cryo-EM structures reveal that RFC recognizes both the $3\hat{a} \in \mathbb{Z}^2$ - and $5\hat{a} \in \mathbb{Z}^2$ -DNA ends to load PCNA onto gaps for DNA repair. ELife, 0, 11, .	2.8	13