
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid distribution on ethnic hairs by Fourier transform infrared synchrotron spectroscopy. Skin Research and Technology, 2022, 28, 75-83.	1.6	5
2	Graphite flame retardant applied on polyester textiles: flammable, thermal and in vitro toxicological analysis. Journal of Industrial Textiles, 2022, 51, 4424S-4440S.	2.4	6
3	Mathematical models for drug delivery from textile. Journal of Industrial Textiles, 2021, 50, 1225-1238.	2.4	2
4	Assessment of Finite and Infinite Dose In Vitro Experiments in Transdermal Drug Delivery. Pharmaceutics, 2021, 13, 364.	4.5	9
5	Enzymatic Synthesis of Phloretin αâ€Glucosides Using a Sucrose Phosphorylase Mutant and its Effect on Solubility, Antioxidant Properties and Skin Absorption. Advanced Synthesis and Catalysis, 2021, 363, 3079-3089.	4.3	10
6	Lanolin-Based Synthetic Membranes for Transdermal Permeation and Penetration Drug Delivery Assays. Membranes, 2021, 11, 444.	3.0	1
7	Increased Comfort of Polyester Fabrics. Polymers, 2021, 13, 3010.	4.5	3
8	Effect of propylene glycol on the skin penetration of drugs. Archives of Dermatological Research, 2020, 312, 337-352.	1.9	49
9	Ethnic hair: Thermoanalytical and spectroscopic differences. Skin Research and Technology, 2020, 26, 617-626.	1.6	7
10	Action of surfactants on the mammal epidermal skin barrier. Giornale Italiano Di Dermatologia E Venereologia, 2019, 154, 405-412.	0.8	10
11	A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/ microspheres: Preparation, physicochemical characterization, and storage stability. Industrial Crops and Products, 2019, 140, 111669.	5.2	61
12	Prediction of the skin permeability of topical drugs using in silico and in vitro models. European Journal of Pharmaceutical Sciences, 2019, 136, 104945.	4.0	26
13	Selective modification of skin barrier lipids. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172, 94-102.	2.8	13
14	External lipid function in ethnic hairs. Journal of Cosmetic Dermatology, 2019, 18, 1912-1920.	1.6	7
15	Lipid loses and barrier function modifications of the brownâ€ŧoâ€white hair transition. Skin Research and Technology, 2019, 25, 517-525.	1.6	12
16	Vehiculation of Active Principles as a Way to Create Smart and Biofunctional Textiles. Materials, 2018, 11, 2152.	2.9	15
17	Hair Strengthening Evaluation of Anisotropic Osmolite Solutions (Inositol + Arginine): Cross-Talk between Dermal Papilla Fibroblast and Keratinocytes of the Outer Root Sheath Using a µHair Follicle 3D Model. Cosmetics, 2018, 5, 56.	3.3	0
18	In vitro penetration through the skin layers of topically applied glucocorticoids. Drug Testing and Analysis, 2018, 10, 1528-1535.	2.6	13

#	Article	IF	CITATIONS
19	Lanolin-Based Synthetic Membranes as Percutaneous Absorption Models for Transdermal Drug Delivery. Pharmaceutics, 2018, 10, 73.	4.5	20
20	Solvent-Extracted Wool Wax: Thermotropic Properties and Skin Efficacy. Skin Pharmacology and Physiology, 2018, 31, 198-205.	2.5	8
21	Soybean-fragmented proteoglycans against skin aging. Journal of Cosmetic and Laser Therapy, 2017, 19, 237-244.	0.9	5
22	Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels. Pharmaceutical Research, 2017, 34, 1728-1740.	3.5	37
23	In Vitro DVS Approach to Evaluate Skin Reparation. Cosmetics, 2016, 3, 15.	3.3	2
24	Influence of vehicles on antioxidant efficacy in hair. RSC Advances, 2016, 6, 15929-15936.	3.6	0
25	The influence of hair lipids in ethnic hair properties. International Journal of Cosmetic Science, 2016, 38, 77-84.	2.6	20
26	Skin barrier modification with organic solvents. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1935-1943.	2.6	19
27	Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid. Journal of Photochemistry and Photobiology B: Biology, 2016, 156, 50-55.	3.8	37
28	The effect of internal lipids on the water sorption kinetics of keratinised tissues. Journal of Thermal Analysis and Calorimetry, 2016, 123, 2013-2020.	3.6	2
29	Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol. Journal of Pharmacy and Pharmacology, 2015, 67, 900-908.	2.4	31
30	Effect of lipid modification on stratum corneum permeability. Journal of Thermal Analysis and Calorimetry, 2015, 120, 297-305.	3.6	12
31	Advanced hair damage model from ultraâ€violet radiation in the presence of copper. International Journal of Cosmetic Science, 2015, 37, 532-541.	2.6	19
32	Textiles with gallic acid microspheres: <i>in vitro</i> release characteristics. Journal of Microencapsulation, 2014, 31, 535-541.	2.8	20
33	Gallic acid vehiculized through liposomes or mixed micelles in biofunctional textiles. Journal of the Textile Institute, 2014, 105, 175-186.	1.9	5
34	Bicellar systems as vehicle for the treatment of impaired skin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 212-218.	4.3	9
35	Antioxidative effects and percutaneous absorption of five polyphenols. Free Radical Biology and Medicine, 2014, 75, 149-155.	2.9	40
36	Water sorption evaluation of stratum corneum. Thermochimica Acta, 2014, 583, 43-48.	2.7	5

#	Article	IF	CITATIONS
37	Hair efficacy of botanical extracts. Journal of Applied Polymer Science, 2013, 128, 861-868.	2.6	9
38	Moisture sorption/desorption of protein fibres. Thermochimica Acta, 2013, 552, 70-76.	2.7	23
39	Keratins and lipids in ethnic hair. International Journal of Cosmetic Science, 2013, 35, 244-249.	2.6	47
40	Bicellar systems as new delivery strategy for topical application of flufenamic acid. International Journal of Pharmaceutics, 2013, 444, 60-69.	5.2	22
41	Antioxidant cosmeto-textiles: Skin assessment. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 192-199.	4.3	53
42	Cosmetotextiles with Gallic Acid: Skin Reservoir Effect. Journal of Drug Delivery, 2013, 2013, 1-7.	2.5	11
43	Efficacy of antioxidants in human hair. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 146-156.	3.8	46
44	Monitoring of the microcapsule/liposome application on textile fabrics. Journal of the Textile Institute, 2012, 103, 19-27.	1.9	13
45	Photodamage determination of human hair. Journal of Photochemistry and Photobiology B: Biology, 2012, 106, 101-106.	3.8	44
46	Structural effects of flufenamic acid in DPPC/DHPC bicellar systems. Soft Matter, 2011, 7, 8488.	2.7	16
47	Biofunctional textiles prepared with liposomes: <i>in vivo</i> and <i>in vitro</i> assessment. Journal of Microencapsulation, 2011, 28, 799-806.	2.8	13
48	Lipid Role in Wool Dyeing. , 2011, , .		0
49	Barrier function of intact and impaired skin: percutaneous penetration of caffeine and salicylic acid. International Journal of Dermatology, 2011, 50, 881-889.	1.0	34
50	Water sorption of nails treated with wool keratin proteins and peptides. Journal of Thermal Analysis and Calorimetry, 2011, 104, 323-329.	3.6	5
51	Restoring important hair properties with wool keratin proteins and peptides. Fibers and Polymers, 2010, 11, 1055-1061.	2.1	27
52	Effect of wool keratin proteins and peptides on hair water sorption kinetics. Journal of Thermal Analysis and Calorimetry, 2010, 102, 43-48.	3.6	22
53	New anionic surfaceâ€active agent derived from wool proteins for hair treatment. Journal of Applied Polymer Science, 2010, 115, 1461-1467.	2.6	6
54	Bicellar systems for in vitro percutaneous absorption of diclofenac. International Journal of Pharmaceutics, 2010, 386, 108-113.	5.2	41

#	Article	IF	CITATIONS
55	Water absorption/desorption of human hair and nails. Thermochimica Acta, 2010, 503-504, 33-39.	2.7	38
56	Water content of hair and nails. Thermochimica Acta, 2009, 494, 136-140.	2.7	35
57	An ex vivo methodology to assess the lipid peroxidation in stratum corneum. Journal of Photochemistry and Photobiology B: Biology, 2009, 97, 71-76.	3.8	25
58	Lipid Nanostructures: Self-Assembly and Effect on Skin Properties. Molecular Pharmaceutics, 2009, 6, 1237-1245.	4.6	34
59	Liposome formation with wool lipid extracts rich in ceramides. Journal of Liposome Research, 2009, 19, 77-83.	3.3	5
60	Supercritical fluid extraction to obtain ceramides from wool fibers. Separation and Purification Technology, 2008, 63, 552-557.	7.9	15
61	Lamellar rearrangement of internal lipids from human hair. Chemistry and Physics of Lipids, 2008, 155, 1-6.	3.2	21
62	Effect of bicellar systems on skin properties. International Journal of Pharmaceutics, 2008, 352, 263-272.	5.2	33
63	Cosmetic effectiveness of topically applied hydrolysed keratin peptides and lipids derived from wool. Skin Research and Technology, 2008, 14, 243-248.	1.6	55
64	Application of internal wool lipids to hair. Skin Research and Technology, 2008, 14, 448-453.	1.6	7
65	Phosphatidylcholine unilamellar liposomes as vehicles for a 1:2 metal-complex dye in wool dyeing. Coloration Technology, 2008, 113, 165-169.	0.1	9
66	Thermotropic Behavior of Ceramides and Their Isolation from Wool. Langmuir, 2007, 23, 1359-1364.	3.5	9
67	Thermal analysis of merino wool fibres without internal lipids. Journal of Applied Polymer Science, 2007, 104, 545-551.	2.6	24
68	Liposomes of phosphatidylcholine: a biological natural surfactant as a dispersing agent. Coloration Technology, 2007, 123, 237-241.	1.5	19
69	Influence of water in the lamellar rearrangement of internal wool lipids. Colloids and Surfaces B: Biointerfaces, 2007, 60, 89-94.	5.0	7
70	Liposomes as Alternative Vehicles for Sun Filter Formulations. Drug Delivery, 2005, 12, 83-88.	5.7	36
71	New Generation of Liposomic Products with High Migration Properties. Textile Reseach Journal, 2004, 74, 961-966.	2.2	8
72	Internal lipid content and viscoelastic behavior of wool fibers. Journal of Applied Polymer Science, 2004, 92, 3252-3259.	2.6	11

LUISA CODERCH

#	Article	IF	CITATIONS
73	X-ray diffraction analysis of internal wool lipids. Chemistry and Physics of Lipids, 2004, 130, 159-166.	3.2	26
74	Physicochemical Aspects of the Liposomeâ^'Wool Interaction in Wool Dyeing. Langmuir, 2004, 20, 3068-3073.	3.5	28
75	Permeability investigations of phospholipid liposomes by adding cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 221, 9-17.	4.7	36
76	Ceramides and Skin Function. American Journal of Clinical Dermatology, 2003, 4, 107-129.	6.7	284
77	Reconstitution of Liposomes inside the Intercellular Lipid Domain of the Stratum Corneum. Langmuir, 2002, 18, 7002-7008.	3.5	20
78	Sublytic Alterations Caused by the Nonionic Surfactant Dodecyl Maltoside in Stratum Corneum Lipid Liposomes. Langmuir, 2002, 18, 297-300.	3.5	3
79	Use of Synchrotron Radiation SAXS to Study the First Steps of the Interaction between Sodium Dodecyl Sulfate and Charged Liposomes. Spectroscopy, 2002, 16, 343-350.	0.8	10
80	Extraction and analysis of ceramides from internal wool lipids. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1215-1220.	1.9	24
81	Dodecyl maltoside as a solubilizing agent of stratum corneum lipid liposomes. Colloid and Polymer Science, 2002, 280, 352-357.	2.1	3
82	Efficacy of stratum corneum lipid supplementation on human skin. Contact Dermatitis, 2002, 47, 139-146.	1.4	52
83	Octyl Glucoside-Mediated Solubilization and Reconstitution of Liposomes:  Structural and Kinetic Aspects. Journal of Physical Chemistry B, 2001, 105, 9879-9886.	2.6	35
84	Dyeing Wool at Low Temperatures: New Method Using Liposomes. Textile Reseach Journal, 2001, 71, 678-682.	2.2	35
85	Partitioning of SDS in liposomes coated by the exopolymer excreted by Pseudoalteromonas antarctica NF3 as a measure of vesicle protection against this surfactant. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 255-266.	3.5	3
86	Liposomes as protective agents of stratum corneum against octyl glucoside: a study based on high-resolution, low-temperature scanning electron microscopy. Micron, 2001, 32, 201-205.	2.2	14
87	Sublytic alterations caused by alkyl glucosides in stratum corneum lipid liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176, 167-176.	4.7	2
88	Solubilization of stratum corneum lipid liposomes by Triton X-100. Influence of the level of cholesteryl sulfate in the process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182, 15-23.	4.7	8
89	Effect of liposomes on delipidized stratum corneum structure: an â€~in vitro' study based on high resolution low temperature scanning electron microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 182, 35-42.	4.7	5
90	Effect of Internal Wool Lipid Liposomes on Skin Repair. Skin Pharmacology and Physiology, 2000, 13, 188-195.	2.5	30

LUISA CODERCH

#	Article	IF	CITATIONS
91	Structural Modifications in the Stratum corneum by Effect of Different Solubilizing Agents: A Study Based on High-Resolution Low-Temperature Scanning Electron Microscopy. Skin Pharmacology and Physiology, 2000, 13, 265-272.	2.5	17
92	Use of wide and small angle X-ray diffraction to study the modifications in the stratum corneum induced by octyl glucoside. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 162, 123-130.	4.7	13
93	Octyl glucoside as a tool to induce structural modifications in the stratum corneum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 168, 115-123.	4.7	7
94	Influence of cholesterol on liposome fluidity by EPR. Journal of Controlled Release, 2000, 68, 85-95.	9.9	159
95	Alterations in stratum corneum lipid liposomes due to the action of Triton X-100. Journal of Controlled Release, 2000, 68, 387-396.	9.9	11
96	Influence of the level of cholesteryl sulfate in the solubilization of stratum corneum lipid liposomes by sodium dodecyl sulfate. Colloid and Polymer Science, 2000, 278, 794-799.	2.1	4
97	Influence of the Fluidity of Liposome Compositions on Percutaneous Absorption. Drug Delivery, 2000, 7, 7-13.	5.7	37
98	Chromium Distribution in Wool by Electron Microscopy and X-Ray Energy Dispersive Analysis. Textile Reseach Journal, 2000, 70, 315-320.	2.2	3
99	Different stratum corneum lipid liposomes as models to evaluate the effect of the sodium dodecyl sulfate. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1508, 196-209.	2.6	21
100	Thermodynamic and Structural Aspects of Internal Wool Lipids. Langmuir, 2000, 16, 4808-4812.	3.5	16
101	Alkyl sulfate surfactants as solubilizing agents of liposomes modeling the composition of the stratum corneum lipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 147, 341-348.	4.7	7
102	Influence of the level of ceramides on the permeability of stratum corneum lipid liposomes caused by a C12-betaine/sodium dodecyl sulfate mixture. International Journal of Pharmaceutics, 1999, 183, 165-173.	5.2	17
103	Influence of ceramides in the solubilization of stratum corneum lipid liposomes by C12-betaine/sodium dodecyl sulfate mixtures. International Journal of Pharmaceutics, 1999, 187, 231-241.	5.2	7
104	Protective effect caused by the exopolymer excreted by Pseudoalteromonas antarctica NF 3 on liposomes against Triton X-100. Colloid and Polymer Science, 1999, 277, 1200-1204.	2.1	2
105	The Effect of Liposomes on Skin Barrier Structure. Skin Pharmacology and Physiology, 1999, 12, 235-246.	2.5	41
106	Solubilization of phosphatidylcholine liposomes by the amphoteric surfactant dodecyl betaine. Chemistry and Physics of Lipids, 1998, 94, 71-79.	3.2	13
107	Vesicle to micelle structural transitions involved in the interaction of dodecylbetaine with liposomes: Transmission electron microscopy and light scattering studies. Micron, 1998, 29, 175-182.	2.2	9
108	Influence of the level of ceramides in the permeability of stratum corneum lipid liposomes caused by sodium dodecyl sulfate. Chemistry and Physics of Lipids, 1998, 94, 181-191.	3.2	11

LUISA CODERCH

#	Article	IF	CITATIONS
109	Subsolubilizing alterations caused by alkyl glucosides in phosphatidylcholine liposomes. Journal of Controlled Release, 1998, 52, 159-168.	9.9	29
110	Transmission electron microscopy and light scattering studies on the interaction of a nonionic/anionic surfactant mixture with phosphatidylcholine liposomes. , 1998, 40, 63-71.		14
111	Solubilization of liposomes modelling the stratum corneum lipid composition by betaine-type zwitterionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 273-280.	4.7	4
112	Interactions of oxyethylenated nonylphenols with liposomes mimicking the stratum corneum lipid composition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 145, 83-91.	4.7	6
113	Permeability changes in liposomes modeling the stratum corneum lipid composition due to C12-alkyl betaine/sodium dodecyl sulfate mixtures. International Journal of Pharmaceutics, 1998, 171, 63-74.	5.2	9
114	Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Letters, 1998, 426, 314-318.	2.8	152
115	Optimizing a Wool Dyeing Process with an Azoic 1:2 Metal Complex Dye Using Commercially Available Liposomes. Textile Reseach Journal, 1998, 68, 635-642.	2.2	24
116	Phosphatidilcholine Liposomes as Vehicles for Disperse Dyes for Dyeing Polyester/Wool Blends. Textile Reseach Journal, 1998, 68, 209-218.	2.2	22
117	Internal Lipid Wool Structure Modification Due to a Nonionic Auxiliary Used in Dyeing at Low Temperatures. Textile Reseach Journal, 1997, 67, 131-136.	2.2	10
118	SELECTIVE SOLUBILIZATION OF THE STRATUM CORNEUM COMPONENTS USING SURFACTANTS. Journal of Dispersion Science and Technology, 1997, 18, 503-515.	2.4	0
119	Permeability changes caused by surfactants in liposomes that model the stratum corneum lipid composition. JAOCS, Journal of the American Oil Chemists' Society, 1997, 74, 1-8.	1.9	22
120	Incorporation of non-steroidal anti-inflammatory drugs into specific monophasic formulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124, 115-123.	4.7	5
121	Study of the composition and structure of pig stratum corneum based on the action of different solubilizing agents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 123-124, 415-424.	4.7	8
122	Physicochemical characteristics of liposomes formed with internal wool lipids. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 1713-1718.	1.9	25
123	Formation and characterization of liposomes from lipid/proteic material extracted from pig stratum corneum. JAOCS, Journal of the American Oil Chemists' Society, 1996, 73, 443-448.	1.9	15
124	Percutaneous penetration of liposomes using the tape stripping technique. International Journal of Pharmaceutics, 1996, 139, 197-203.	5.2	36
125	Lipid composition influence on the surfactant-induced release of the contents in liposomes formed by lipids modelling the stratum corneum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 259-267.	4.7	13
126	The formation of liposomes in vitro by mixtures of lipids modeling the composition of the stratum corneum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 101, 9-19.	4.7	43

#	Article	IF	CITATIONS
127	Chromatographic characterization of internal polar lipids from wool. JAOCS, Journal of the American Oil Chemists' Society, 1995, 72, 715-720.	1.9	38
128	Multilamellar Liposomes Including Cholesterol as Carriers of Azobenzene Disperse Dyes in Wool Dyeing. Textile Reseach Journal, 1995, 65, 163-170.	2.2	20
129	Percutaneous penetration in vivo of amino acids. International Journal of Pharmaceutics, 1994, 111, 7-14.	5.2	6
130	Degradative Wool Shrinkproofing Processes: Part II: Lipid Modification. Textile Reseach Journal, 1992, 62, 704-709.	2.2	10
131	Degradative Wool Shrinkproofing Processes. Textile Reseach Journal, 1992, 62, 302-306.	2.2	9
132	Large Unilamellar Vesicle Liposomes for Wool Dyeing: Stability of Dye-Liposome Systems and Their Application on Untreated Wool. Textile Reseach Journal, 1992, 62, 406-413.	2.2	29
133	A New Process for Exhausting a Permethrin-based Mothproofing Agent on Wool Fibres. Journal of the Textile Institute, 1991, 82, 447-455.	1.9	2
134	New Advances in the Internal Lipid Composition of Wool. Textile Reseach Journal, 1988, 58, 338-342.	2.2	7
135	Shrinkage Modifications of Wool Fabrics by Sulphite Treatments in Aqueous Organic Solvent Media: Effect of the Organic Solvent on the Internal Lipids. Textile Reseach Journal, 1986, 56, 611-616.	2.2	11