Jiang-Feng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478438/publications.pdf

Version: 2024-02-01

		66250	8	1351	
194	7,275	44		76	
papers	citations	h-index		g-index	
106	106	106		5004	
196	196	196		5994	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Evaluating Lead Halide Perovskite Nanocrystals as a Spin Laser Gain Medium. Nano Letters, 2022, 22, 658-664.	4.5	13
2	Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	17
3	Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Science Advances, 2022, 8, eabl8219.	4.7	10
4	Biocompatible Nanotomography of Tightly Focused Light. Nano Letters, 2022, 22, 1851-1857.	4.5	1
5	Observation of magnetic domain patterns with tilted uniaxial anisotropy using a single-spin magnetometer. Physical Review B, 2022, 105, .	1.1	1
6	Testing the upper bound on the speed of scrambling with an analogue of Hawking radiation using trapped ions. European Physical Journal C, 2022, 82, 1.	1.4	13
7	Spin Quantum Heat Engine Quantified by Quantum Steering. Physical Review Letters, 2022, 128, 090602.	2.9	25
8	Magnetic Phase Transition in Two-Dimensional CrBr ₃ Probed by a Quantum Sensor. Chinese Physics Letters, 2022, 39, 047601.	1.3	6
9	Excited-State Spectroscopy of Spin Defects in Hexagonal Boron Nitride. Nano Letters, 2022, 22, 3545-3549.	4.5	20
10	Experimental violation of the Leggett-Garg inequality with a single-spin system. Physical Review A, 2022, 105, .	1.0	1
11	A hybrid magnetometer towards femtotesla sensitivity under ambient conditions. Science Bulletin, 2021, 66, 127-132.	4.3	41
12	Shape-Driven EIT Reconstruction Using Fourier Representations. IEEE Transactions on Medical Imaging, 2021, 40, 481-490.	5.4	19
13	Dynamic Observation of Topological Soliton States in a Programmable Nanomechanical Lattice. Nano Letters, 2021, 21, 1025-1031.	4.5	13
14	A field-programmable-gate-array based high time resolution arbitrary timing generator with a time folding method utilizing multiple carry-chains. Review of Scientific Instruments, 2021, 92, 014701.	0.6	4
15	Phase-Controlled Pathway Interferences and Switchable Fast-Slow Light in a Cavity-Magnon Polariton System. Physical Review Applied, 2021, 15, .	1.5	29
16	Mechanical Dissipation Below <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mspace width="0.2em"></mml:mspace><mml:mi>inline" overflow="scroll"><mml:mi></mml:mi>inline" overflow="scroll"><mml:mi></mml:mi></mml:mi></mml:math> with a Cryogenic Diamagnetic Levitated Micro-Oscillator. Physical Review Applied, 2021, 15, .	1.5	21
17	Experimental Protection of the Spin Coherence of a Molecular Qubit Exceeding a Millisecond. Chinese Physics Letters, 2021, 38, 030303.	1.3	6
18	High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nature Communications, 2021, 12, 1529.	5.8	39

#	Article	IF	CITATIONS
19	Searching spin-mass interaction using a diamagnetic levitated magnetic-resonance force sensor. Physical Review Research, 2021, 3, .	1.3	5
20	Parallel optically detected magnetic resonance spectrometer for dozens of single nitrogen-vacancy centers using laser-spot lattice. Review of Scientific Instruments, 2021, 92, 045107.	0.6	3
21	Probing low-energy Lorentz violation from high-energy modified dispersion in dipolar Bose-Einstein condensates. Physical Review D, 2021, 103, .	1.6	7
22	Dynamically Encircling an Exceptional Point in a Real Quantum System. Physical Review Letters, 2021, 126, 170506.	2.9	53
23	Supershape augmented reconstruction method for electrical impedance tomography., 2021,,.		2
24	A flexible nitrogen-vacancy center probe for scanning magnetometry. Review of Scientific Instruments, 2021, 92, 055001.	0.6	8
25	Experimental Constraint on an Exotic Parity-Odd Spin- and Velocity-Dependent Interaction with a Single Electron Spin Quantum Sensor. Physical Review Letters, 2021, 127, 010501.	2.9	16
26	Molecular-Spin-Qubit Noise Spectroscopy Through Dynamical Decoupling. Physical Review Applied, 2021, 15, .	1.5	2
27	Majorana zero modes in a cylindrical semiconductor quantum wire. Physical Review B, 2021, 104, .	1.1	2
28	Identity Test of Single <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>NV</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>ml:maos>â^'∘</td><td>:/m&nl:mo></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	ml:m a os>â^'∘	:/m&nl:mo>
29	Shape and topology optimization in electrical impedance tomography via moving morphable components method. Structural and Multidisciplinary Optimization, 2021, 64, 585-598.	1.7	5
30	Lens-Free Optical Detection of Thermal Motion of a Submillimeter Sphere Diamagnetically Levitated in High Vacuum. Physical Review Applied, 2021, 16, .	1.5	13
31	Beating the standard quantum limit under ambient conditions with solid-state spins. Science Advances, 2021, 7, .	4.7	23
32	Resonant quantum principal component analysis. Science Advances, 2021, 7, .	4.7	19
33	Optical-Gain-based Sensing Using Inorganic-Ligand-Passivated Colloidal Quantum Dots. Nano Letters, 2021, 21, 7732-7739.	4.5	6
34	Experimental study of quantum coherence decomposition and trade-off relations in a tripartite system. Npj Quantum Information, 2021, 7, .	2.8	7
35	Nanoscale localization of the near-surface nitrogen vacancy center assisted by a silicon atomic force microscopy probe. JPhys Photonics, 2021, 3, 014003.	2.2	1
36	Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nature Communications, 2021, 12, 532.	5.8	40

#	Article	IF	CITATIONS
37	Supershape Recovery From Electrical Impedance Tomography Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	12
38	Nanoscale zero-field detection based on single solid-state spins in diamond. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 213301.	0.2	3
39	Supershape Augmented Reconstruction Method Based on Boolean Operations in Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	2
40	Experimental quantum simulation of superradiant phase transition beyond no-go theorem via antisqueezing. Nature Communications, $2021,12,6281.$	5.8	23
41	Experimental critical quantum metrology with the Heisenberg scaling. Npj Quantum Information, 2021, 7, .	2.8	16
42	Nonstationary Shape Estimation in Electrical Impedance Tomography Using a Parametric Level Set-Based Extended Kalman Filter Approach. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1894-1907.	2.4	40
43	An FPGA-Based Hardware Platform for the Control of Spin-Based Quantum Systems. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1127-1139.	2.4	27
44	CT Image-Guided Electrical Impedance Tomography for Medical Imaging. IEEE Transactions on Medical Imaging, 2020, 39, 1822-1832.	5.4	35
45	Structural Analysis of Nuclear Spin Clusters via 2D Nanoscale Nuclear Magnetic Resonance Spectroscopy. Advanced Quantum Technologies, 2020, 3, 1900136.	1.8	7
46	B-Spline Level Set Method for Shape Reconstruction in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 1917-1929.	5.4	29
47	Superresolution localization of nitrogen-vacancy centers in diamond with quantum-controlled photoswitching. Physical Review A, 2020, 102, .	1.0	1
48	Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy. Npj Quantum Information, 2020, 6, .	2.8	8
49	Shape-Driven Difference Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 3801-3812.	5.4	18
50	Enhanced sensitivity of the nitrogen-vacancy ensemble magnetometer via surface coating. Applied Physics Letters, 2020, 117 , .	1.5	13
51	Intramolecular Annulation of Gossypol by Laccase to Produce Safe Cottonseed Protein. Frontiers in Chemistry, 2020, 8, 583176.	1.8	8
52	Probe optimization for quantum metrology via closed-loop learning control. Npj Quantum Information, 2020, 6, .	2.8	17
53	Multiphase Conductivity Imaging With Electrical Impedance Tomography and B-Spline Level Set Method. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9634-9644.	2.4	15
54	Chiral State Conversion in a Levitated Micromechanical Oscillator with In Situ Control of Parameter Loops. Chinese Physics Letters, 2020, 37, 100301.	1.3	1

#	Article	IF	CITATIONS
55	Realization of programmable nanomechanical lattice with both nearest-neighboring and next-nearest-neighboring couplings. Applied Physics Letters, 2020, 117, .	1.5	5
56	Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam. Nano Letters, 2020, 20, 8267-8272.	4.5	30
57	Perfect coherent transfer in an on-chip reconfigurable nanoelectromechanical network. Physical Review B, 2020, 101, .	1.1	14
58	Kilohertz electron paramagnetic resonance spectroscopy of single nitrogen centers at zero magnetic field. Science Advances, 2020, 6, eaaz8244.	4.7	6
59	Searching for an exotic spin-dependent interaction between electrons at the nanometer scale with molecular rulers. Physical Review D, 2020, 101, .	1.6	5
60	Nanoscale Electrometry Based on a Magnetic-Field-Resistant Spin Sensor. Physical Review Letters, 2020, 124, 247701.	2.9	33
61	Shape Reconstruction Using Boolean Operations in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 2954-2964.	5.4	36
62	Single-spin scanning magnetic microscopy with radial basis function reconstruction algorithm. Applied Physics Letters, 2020, 116, .	1.5	5
63	Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice*. Chinese Physics Letters, 2020, 37, 014501.	1.3	2
64	Quantum Simulation for Three-Dimensional Chiral Topological Insulator. Physical Review Letters, 2020, 125, 020504.	2.9	39
65	Dissipative Quantum Sensing with a Magnetometer Based on Nitrogen-Vacancy Centers in Diamond. Physical Review Applied, 2020, 14, .	1.5	8
66	A high resolution time-to-digital-convertor based on a carry-chain and DSP48E1 adders in a 28-nm field-programmable-gate-array. Review of Scientific Instruments, 2020, 91, 024708.	0.6	17
67	Observation of Anti- <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow> <mml:mi mathvariant="script">P</mml:mi> <mml:mi mathvariant="script">T</mml:mi> </mml:mrow> </mml:math> -Symmetry Phase Transition in the Magnon-Cavity-Magnon Coupled System. Physical Review Applied. 2020. 13	1.5	71
68	Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator. Physical Review Research, 2020, 2, .	1.3	38
69	Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photonics Research, 2020, 8, 1289.	3.4	18
70	Applying a joint geophysical inversion approach for medical imaging. , 2020, , .		0
71	A Parametric Level Set-Based Approach to Difference Imaging in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2019, 38, 145-155.	5.4	57
72	Observation of dynamical phase transitions in a topological nanomechanical system. Physical Review B, 2019, 100, .	1.1	43

#	Article	IF	Citations
73	Efficient Direct Measurement of Arbitrary Quantum Systems via Weak Measurement. Physical Review Applied, 2019, 12, .	1.5	6
74	Basis-independent quantum coherence and its distribution. Annals of Physics, 2019, 409, 167906.	1.0	21
75	Single Rare-Earth Ions as Atomic-Scale Probes in Ultrascaled Transistors. Nano Letters, 2019, 19, 5025-5030.	4.5	16
76	Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor. Chinese Physics B, 2019, 28, 110302.	0.7	1
77	A fully-adjustable picosecond resolution arbitrary timing generator based on multi-stage time interpolation. Review of Scientific Instruments, 2019, 90, 114702.	0.6	16
78	Manipulation of a Micro-Object Using Topological Hydrodynamic Tweezers. Physical Review Applied, 2019, 12, .	1.5	3
79	Floquet dynamical quantum phase transitions. Physical Review B, 2019, 100, .	1.1	63
80	Dynamically Polarizing Spin Register of N- <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>V</mml:mi></mml:math> Centers in Diamond Using Chopped Laser Pulses. Physical Review Applied, 2019, 12, .	1.5	22
81	A programmable two-qubit solid-state quantum processor under ambient conditions. Npj Quantum Information, 2019, 5, .	2.8	44
82	Optimal control of a spin bath. Physical Review A, 2019, 99, .	1.0	10
83	A Moving Morphable Components Based Shape Reconstruction Framework for Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2019, 38, 2937-2948.	5.4	44
84	Breaking the quantum adiabatic speed limit by jumping along geodesics. Science Advances, 2019, 5, eaax3800.	4.7	14
85	Wideband microwave magnetometry using a nitrogen-vacancy center in diamond. Physical Review A, 2019, 99, .	1.0	3
86	Observation of parity-time symmetry breaking in a single-spin system. Science, 2019, 364, 878-880.	6.0	251
87	Experimental preparation of topologically ordered states via adiabatic evolution. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	5
88	Uncertainty equality with quantum memory and its experimental verification. Npj Quantum Information, 2019, 5, .	2.8	21
89	B-Spline-Based Sharp Feature Preserving Shape Reconstruction Approach for Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2019, 38, 2533-2544.	5.4	41
90	Quantum Simulation of Resonant Transitions for Solving the Eigenproblem of an Effective Water Hamiltonian. Physical Review Letters, 2019, 122, 090504.	2.9	25

#	Article	IF	CITATIONS
91	Nanoscale magnetic imaging of ferritins in a single cell. Science Advances, 2019, 5, eaau8038.	4.7	54
92	Analogue Hawking radiation and quantum soliton evaporation in a superconducting circuit. European Physical Journal C, 2019, 79, 1.	1.4	17
93	Experimental observation of dynamical bulk-surface correspondence in momentum space for topological phases. Physical Review A, 2019, 100, .	1.0	27
94	Broadband electron paramagnetic resonance spectrometer from 1 to 15 GHz using metallic coplanar waveguide. Review of Scientific Instruments, 2019, 90, 125109.	0.6	3
95	Magnetic resonance spectroscopy of single molecules. , 2019, , .		0
96	Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor. Nature Communications, 2018, 9, 739.	5.8	54
97	A Parametric Level Set Method for Electrical Impedance Tomography. IEEE Transactions on Medical Imaging, 2018, 37, 451-460.	5.4	70
98	Experimental Observation of a Generalized Thouless Pump with a Single Spin. Physical Review Letters, 2018, 120, 120501.	2.9	59
99	Experimentally probing topological order and its breakdown through modular matrices. Nature Physics, 2018, 14, 160-165.	6.5	28
100	An X-band pulsed electron paramagnetic resonance spectrometer with time resolution improved by a field-programmable-gate-array based pulse generator. Review of Scientific Instruments, 2018, 89, 125104.	0.6	6
101	Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry. Physical Review B, 2018, 97, .	1.1	11
102	Ultra-broadband coplanar waveguide for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Review of Scientific Instruments, 2018, 89, 064705.	0.6	17
103	Single-DNA electron spin resonance spectroscopy in aqueous solutions. Nature Methods, 2018, 15, 697-699.	9.0	58
104	A pico-second resolution arbitrary timing generator based on time folding and time interpolating. Review of Scientific Instruments, 2018, 89, 074701.	0.6	10
105	Nanoscale zero-field electron spin resonance spectroscopy. Nature Communications, 2018, 9, 1563.	5.8	22
106	Constraints on a Spin-Dependent Exotic Interaction between Electrons with Single Electron Spin Quantum Sensors. Physical Review Letters, 2018, 121, 080402.	2.9	23
107	A Parametric Level set Method for Imaging Multiphase Conductivity Using Electrical Impedance Tomography. IEEE Transactions on Computational Imaging, 2018, 4, 552-561.	2.6	41
108	Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor. Physical Review Applied, 2018, 9, .	1.5	3

#	Article	IF	CITATIONS
109	Numerical optimal control of spin systems at zero magnetic field. Physical Review A, 2018, 97, .	1.0	11
110	Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System. Physical Review Letters, 2017, 118, 130504.	2.9	32
111	Harnessing the power of quantum systems based on spin magnetic resonance: from ensembles to single spins. Advances in Physics: X, 2017, 2, 125-168.	1.5	9
112	Experimental test of Born's rule by inspecting third-order quantum interference on a single spin in solids. Physical Review A, 2017, 95, .	1.0	19
113	Merging gold catalysis, organocatalytic oxidation, and Lewis acid catalysis for chemodivergent synthesis of functionalized oxazoles from N-propargylamides. Chemical Communications, 2017, 53, 10366-10369.	2.2	37
114	Universal quantum control in zero-field nuclear magnetic resonance. Physical Review A, 2017, 95, .	1.0	14
115	Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator. Physical Review X, 2017, 7, .	2.8	262
116	Decoherence Control of Nitrogen-Vacancy Centers. Scientific Reports, 2017, 7, 11937.	1.6	10
117	Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits. Physical Review B, 2017, 96, .	1.1	6
118	Experimental Demonstration of Uncertainty Relations for the Triple Components of Angular Momentum. Physical Review Letters, 2017, 118, 180402.	2.9	35
119	Generic preparation and entanglement detection of equal superposition states. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	9
120	Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Physical Review A, 2016, 94, .	1.0	12
121	Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond. Nature Communications, 2016, 7, 11517.	5.8	21
122	Direct Measurement of Topological Numbers with Spins in Diamond. Physical Review Letters, 2016, 117, 060503.	2.9	32
123	Quantum state and process tomography via adaptive measurements. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	24
124	Experimental observation of topological transitions in interacting multispin systems. Physical Review A, 2016, 93, .	1.0	11
125	Experimental Test of Heisenberg's Measurement Uncertainty Relation Based on Statistical Distances. Physical Review Letters, 2016, 116, 160405.	2.9	44
126	Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice. Physical Review Letters, 2016, 117, 017701.	2.9	32

#	Article	IF	Citations
127	Wavelet-based fast time-resolved magnetic sensing with electronic spins in diamond. Physical Review B, 2016, 93, .	1.1	6
128	Cooling a mechanical resonator to the quantum regime by heating it. Physical Review A, 2016, 94, .	1.0	20
129	Experimental Time-Optimal Universal Control of Spin Qubits in Solids. Physical Review Letters, 2016, 117, 170501.	2.9	52
130	High-Time-Resolution Nuclear Magnetic Resonance With Nitrogen-Vacancy Centers. IEEE Magnetics Letters, 2016, 7, 1-5.	0.6	13
131	Experimental simulation of the Unruh effect on an NMR quantum simulator. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	2.0	28
132	Resolving remote nuclear spins in a noisy bath by dynamical decoupling design. Physical Review A, 2015, 92, .	1.0	17
133	Experimental Realization of High-Efficiency Counterfactual Computation. Physical Review Letters, 2015, 115, 080501.	2.9	16
134	Towards Chemical Structure Resolution with Nanoscale Nuclear Magnetic Resonance Spectroscopy. Physical Review Applied, 2015, 4, .	1.5	43
135	Î ² -Ketophosphonates formation via deesterification or deamidation of cinnamyl/alkynyl carboxylates or amides with H-phosphonates. RSC Advances, 2015, 5, 103977-103981.	1.7	32
136	Experimental Observation of Lee-Yang Zeros. Physical Review Letters, 2015, 114, 010601.	2.9	122
137	Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347, 1135-1138.	6.0	283
138	Experimental Realization of a Quantum Support Vector Machine. Physical Review Letters, 2015, 114, 140504.	2.9	167
139	Hybrid magic state distillation for universal fault-tolerant quantum computation. Physical Review A, 2015, 91, .	1.0	5
140	Î ² -Ketophosphonate Formation via Aerobic Oxyphosphorylation of Alkynes or Alkynyl Carboxylic Acids with H-Phosphonates. Organic Letters, 2015, 17, 1786-1789.	2.4	95
141	High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications, 2015, 6, 6631.	5.8	89
142	Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nature Communications, 2015, 6, 8748.	5.8	189
143	Experimental realization of quantum algorithm for solving linear systems of equations. Physical Review A, 2014, 89, .	1.0	82
144	Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond. Physical Review Letters, 2014, 112, 050503.	2.9	45

#	Article	IF	CITATIONS
145	Publisher's Note: Implementation of Dynamically Corrected Gates on a Single Electron Spin in Diamond [Phys. Rev. Lett. 112, 050503 (2014)]. Physical Review Letters, 2014, 112, .	2.9	4
146	Sensing and atomic-scale structure analysis of single nuclear-spin clusters in diamond. Nature Physics, 2014, 10, 21-25.	6.5	97
147	NV-center-based digital quantum simulation of a quantum phase transition in topological insulators. Physical Review B, 2014, 89, .	1.1	12
148	Determining an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math> -qubit state by a single apparatus through a pairwise interaction. Physical Review A, 2014, 89, .	1.0	6
149	Experimental Implementation of Adiabatic Passage between Different Topological Orders. Physical Review Letters, 2014, 113, 080404.	2.9	25
150	Experimental Realization of a Compressed Quantum Simulation of a 32-Spin Ising Chain. Physical Review Letters, 2014, 112, 220501.	2.9	35
151	Quantum information processing and metrology with color centers in diamonds. Frontiers of Physics, 2014, 9, 587-597.	2.4	26
152	Observation of Time-Domain Rabi Oscillations in the Landau-Zener Regime with a Single Electronic Spin. Physical Review Letters, 2014, 112, 010503.	2.9	55
153	Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond. Science Bulletin, 2013, 58, 2920-2923.	1.7	11
154	Demonstration of Motion Transduction Based on Parametrically Coupled Mechanical Resonators. Physical Review Letters, 2013, 110, 227202.	2.9	47
155	Quantum logic readout and cooling of a single dark electron spin. Physical Review B, 2013, 87, .	1.1	23
156	Experimental demonstration of the quantum Zeno effect in NMR with entanglement-based measurements. Physical Review A, 2013, 87, .	1.0	20
157	Tuning a Spin Bath through the Quantum-Classical Transition. Physical Review Letters, 2012, 108, 200402.	2.9	52
158	Coherence-Protected Quantum Gate by Continuous Dynamical Decoupling in Diamond. Physical Review Letters, 2012, 109, 070502.	2.9	93
159	Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: Insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3, 2932.	3.7	157
160	Observing Quantum Oscillation of Ground States in Single Molecular Magnet. Physical Review Letters, 2012, 108, 230501.	2.9	48
161	Optimal measurement for quantum discord of two-qubit states. Physical Review A, 2012, 85, .	1.0	57
162	Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator. Physical Review A, $2011,83,.$	1.0	28

#	Article	IF	Citations
163	Preservation of Bipartite Pseudoentanglement in Solids Using Dynamical Decoupling. Physical Review Letters, 2011, 106, 040501.	2.9	43
164	Dynamical decoupling of electron spins in phosphorus-doped silicon. Science Bulletin, 2011, 56, 591-597.	1.7	9
165	Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Physical Review A, 2011, 83, .	1.0	121
166	Room-Temperature Implementation of the Deutsch-Jozsa Algorithm with a Single Electronic Spin in Diamond. Physical Review Letters, 2010, 105, 040504.	2.9	124
167	Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins. Physical Review A, 2010, 81, .	1.0	25
168	Experimental demonstration of deterministic one-way quantum computation on a NMR quantum computer. Physical Review A, 2010, 81 , .	1.0	10
169	Ground-state entanglement in a system with many-body interactions. Physical Review A, 2010, 81, .	1.0	23
170	Observation of the Ground-State Geometric Phase in a Heisenberg <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi><mml:mi>Y</mml:mi><mml:mi>Model. Physical Review Letters, 2010, 105, 240405.</mml:mi></mml:math>	2.9	47
171	NMR Implementation of a Molecular Hydrogen Quantum Simulation with Adiabatic State Preparation. Physical Review Letters, 2010, 104, 030502.	2.9	194
172	Quantum Simulation of a System with Competing Two- and Three-Body Interactions. Physical Review Letters, 2009, 103, 140501.	2.9	131
173	Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature, 2009, 461, 1265-1268.	13.7	314
174	Observation of geometric phases for three-level systems using NMR interferometry. Physical Review A, 2009, 80, .	1.0	19
175	Experimental Study of the Validity of Quantitative Conditions in the Quantum Adiabatic Theorem. Physical Review Letters, 2008, 101, 060403.	2.9	58
176	Experimental observation of a topological phase in the maximally entangled state of a pair of qubits. Physical Review A, 2007, 76, .	1.0	41
177	Experimental realization of 1 ↠2 asymmetric phase-covariant quantum cloning. Physical Review A, 2007, 75,	1.0	63
178	Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Physical Review A, 2007, 75, .	1.0	46
179	Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Physical Review A, 2006, 73, .	1.0	30
180	Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements. Physical Review A, 2006, 74, .	1.0	20

#	Article	IF	Citations
181	Experimental quantum multimeter and one-qubit fingerprinting. Physical Review A, 2006, 74, .	1.0	23
182	Optimal quantum cloning via spin networks. Physical Review A, 2006, 74, .	1.0	20
183	Experimental implementation of high-fidelity unconventional geometric quantum gates using an NMR interferometer. Physical Review A, 2006, 74, .	1.0	54
184	Quantification of complementarity in multiqubit systems. Physical Review A, 2005, 72, .	1.0	47
185	Experimental Quantum Cloning with Prior Partial Information. Physical Review Letters, 2005, 94, 040505.	2.9	111
186	A UNIVERSAL QUANTUM ESTIMATOR. International Journal of Quantum Information, 2005, 03, 123-132.	0.6	0
187	Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer. Physical Review A, 2005, 71, .	1.0	93
188	Characterization of low-cost one-to-two qubit cloning. Physical Review A, 2004, 69, .	1.0	54
189	Spatial localization and relativistic transformation of quantum spins. Physical Review A, 2004, 70, .	1.0	10
190	NON-CLASSICAL QUANTUM CORRELATIONS IN QUANTUM GAMES. International Journal of Modern Physics B, 2004, 18, 2552-2558.	1.0	3
191	Relativistic invariant quantum entanglement between the spins of moving bodies. Physical Review A, 2003, 68, .	1.0	53
192	Experimental implementation of the quantum random-walk algorithm. Physical Review A, 2003, 67, .	1.0	205
193	Quantum games of asymmetric information. Physical Review E, 2003, 68, 016124.	0.8	35
194	Experimental Realization of Quantum Games on a Quantum Computer. Physical Review Letters, 2002, 88, 137902.	2.9	219