
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell, 2013, 153, 307-319.	13.5	3,202
2	Super-Enhancers in the Control of Cell Identity and Disease. Cell, 2013, 155, 934-947.	13.5	2,916
3	Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361, .	6.0	1,687
4	Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell, 2018, 175, 1842-1855.e16.	13.5	1,195
5	Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes. Cell, 2014, 159, 374-387.	13.5	793
6	YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Cell, 2017, 171, 1573-1588.e28.	13.5	749
7	Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature, 2014, 511, 616-620.	13.7	698
8	An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014, 346, 1373-1377.	6.0	665
9	CDK7 Inhibition Suppresses Super-Enhancer-Linked Oncogenic Transcription in MYCN-Driven Cancer. Cell, 2014, 159, 1126-1139.	13.5	498
10	Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature, 2016, 533, 95-99.	13.7	466
11	PolÂII phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572, 543-548.	13.7	457
12	Transcription factor trapping by RNA in gene regulatory elements. Science, 2015, 350, 978-981.	6.0	389
13	Convergence of Developmental and Oncogenic Signaling Pathways at Transcriptional Super-Enhancers. Molecular Cell, 2015, 58, 362-370.	4.5	382
14	Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor. Cancer Cell, 2014, 26, 909-922.	7.7	376
15	CDK7-Dependent Transcriptional Addiction in Triple-Negative Breast Cancer. Cell, 2015, 163, 174-186.	13.5	346
16	Genome-wide Analyses of Transcription Factor GATA3-Mediated Gene Regulation in Distinct T Cell Types. Immunity, 2011, 35, 299-311.	6.6	293
17	Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics, 2016, 48, 1253-1259.	9.4	265
18	Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature, 2015, 528, 418-421.	13.7	263

#	Article	IF	CITATIONS
19	Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nature Chemical Biology, 2016, 12, 876-884.	3.9	249
20	The long noncoding RNA <i>Wisper</i> controls cardiac fibrosis and remodeling. Science Translational Medicine, 2017, 9, .	5.8	232
21	Models of human core transcriptional regulatory circuitries. Genome Research, 2016, 26, 385-396.	2.4	223
22	Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry. Nature Genetics, 2018, 50, 1240-1246.	9.4	199
23	Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Molecular Cell, 2019, 76, 753-766.e6.	4.5	188
24	<i>MYC</i> Drives a Subset of High-Risk Pediatric Neuroblastomas and Is Activated through Mechanisms Including Enhancer Hijacking and Focal Enhancer Amplification. Cancer Discovery, 2018, 8, 320-335.	7.7	172
25	A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nature Communications, 2017, 8, 14802.	5.8	168
26	Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications, 2017, 8, 14433.	5.8	156
27	The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014, 15, 295-309.	5.2	137
28	Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biology, 2013, 14, R121.	13.9	123
29	Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3841-3846.	3.3	123
30	Cross-Cohort Analysis Identifies a TEAD4–MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma. Cancer Discovery, 2018, 8, 582-599.	7.7	119
31	EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.	7.7	116
32	Multiple Structural Maintenance of Chromosome Complexes at Transcriptional Regulatory Elements. Stem Cell Reports, 2013, 1, 371-378.	2.3	113
33	Suppression of Adaptive Responses to Targeted Cancer Therapy by Transcriptional Repression. Cancer Discovery, 2018, 8, 59-73.	7.7	96
34	Novel Mechanism of Positive versus Negative Regulation by Thyroid Hormone Receptor β1 (TRβ1) Identified by Genome-wide Profiling of Binding Sites in Mouse Liver. Journal of Biological Chemistry, 2014, 289, 1313-1328.	1.6	92
35	Small genomic insertions form enhancers that misregulate oncogenes. Nature Communications, 2017, 8, 14385.	5.8	76
36	Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Molecular Cell, 2020, 78, 459-476.e13.	4.5	76

#	Article	IF	CITATIONS
37	Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors. Cell Reports, 2017, 21, 467-481.	2.9	65
38	EP300 Selectively Controls the Enhancer Landscape of <i>MYCN</i> -Amplified Neuroblastoma. Cancer Discovery, 2022, 12, 730-751.	7.7	64
39	Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia. Blood, 2017, 129, 3221-3226.	0.6	61
40	ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry. Nature Communications, 2019, 10, 5622.	5.8	56
41	APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia, 2017, 31, 2057-2064.	3.3	54
42	TOX Regulates Growth, DNA Repair, and Genomic Instability in T-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2017, 7, 1336-1353.	7.7	48
43	ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Science Advances, 2020, 6, eaaz3440.	4.7	47
44	High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. Journal of Investigative Dermatology, 2018, 138, 1582-1590.	0.3	46
45	Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. American Journal of Human Genetics, 2017, 100, 51-63.	2.6	45
46	Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics, 2013, 14, 193.	1.2	41
47	RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells. Nature Cell Biology, 2020, 22, 372-379.	4.6	37
48	O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β. Journal of Biological Chemistry, 2016, 291, 22703-22713.	1.6	35
49	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	3.3	31
50	Predicting master transcription factors from pan-cancer expression data. Science Advances, 2021, 7, eabf6123.	4.7	30
51	Cell-specific transcriptional control of mitochondrial metabolism by TIF1Î ³ drives erythropoiesis. Science, 2021, 372, 716-721.	6.0	25
52	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	9.4	24
53	JDP2: An oncogenic bZIP transcription factor in T cell acute lymphoblastic leukemia. Journal of Experimental Medicine, 2018, 215, 1929-1945.	4.2	22
54	Retinoic acid rewires the adrenergic core regulatory circuitry of childhood neuroblastoma. Science Advances, 2021, 7, eabe0834.	4.7	22

#	Article	IF	CITATIONS
55	Super-enhancer-based identification of a BATF3/IL-2Râ^²module reveals vulnerabilities in anaplastic large cell lymphoma. Nature Communications, 2021, 12, 5577.	5.8	21
56	CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23626-23635.	3.3	18
57	MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation. Cancers, 2021, 13, 4783.	1.7	12
58	Intrinsic transcriptional heterogeneity in neuroblastoma guides mechanistic and therapeutic insights. Cell Reports Medicine, 2022, 3, 100632.	3.3	12
59	Synergistic Anti-Tumor Effect of Combining Selective CDK7 and BRD4 Inhibition in Neuroblastoma. Frontiers in Oncology, 2021, 11, 773186.	1.3	11
60	BRD2 interconnects with BRD3 to facilitate Pol II transcription initiation and elongation to prime promoters for cell differentiation. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9
61	The nuclear receptor THRB facilitates differentiation of human PSCs into more mature hepatocytes. Cell Stem Cell, 2022, 29, 795-809.e11.	5.2	5
62	SEAseq: a portable and cloud-based chromatin occupancy analysis suite. BMC Bioinformatics, 2022, 23, 77.	1.2	3
63	Abstract 2441: CDK12/13 inhibition cooperates with the Ewing sarcoma oncoprotein EWS/FLI to attenuate homologous recombination repair in Ewing sarcoma cells. , 2016, , .		1