Mei-Shan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1478185/publications.pdf

Version: 2024-02-01

282 papers

3,158 citations

27 h-index

230014

325983 40 g-index

287 all docs

287 docs citations

times ranked

287

2908 citing authors

#	Article	IF	CITATIONS
1	The molecular structure and spectroscopic properties of C3H2O and its isomers: An ab initio study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120388.	2.0	4
2	Two-dimensional MgP3 monolayer with remarkably tunable bandgap and enhanced visible-light and UV optical absorptions. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 135, 114960.	1.3	26
3	2D XBiSe3(XÂ=ÂGa, In, Tl) monolayers with high carrier mobility and enhanced visible-light absorption. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120309.	2.0	7
4	Excellent thermoelectric performances of the SiSe2 monolayer and layered bulk. Applied Surface Science, 2022, 575, 151799.	3.1	16
5	First-principles investigations on the feasibility of the GQD-PEB/PUB nanocomposites as the sensitizer of DSSC. Chemical Physics Letters, 2022, 789, 139306.	1.2	3
6	Impurity Controlled near Infrared Surface Plasmonic in AlN. Nanomaterials, 2022, 12, 459.	1.9	1
7	Two-dimensional AlBiX3(XÂ=ÂS, Se, Te) monolayers for photocatalytic water splitting hydrogen evolution reaction under the irradiation of solar light. FlatChem, 2022, 31, 100331.	2.8	3
8	Assembling of Perylene, Naphthalene, and Pyromellitic Diimide-Based Materials and Their Third-Order Nonlinear Optical Properties. Journal of Physical Chemistry A, 2022, 126, 870-878.	1.1	8
9	Z-Scheme photocatalytic solar-energy-to-hydrogen conversion driven by the HfS ₂ /SiSe heterostructure. Journal of Materials Chemistry C, 2022, 10, 5474-5481.	2.7	28
10	Control one-dimensional length of rectangular pore on graphene membrane for better desalination performance. Nanotechnology, 2022, 33, 245705.	1.3	4
11	Photocatalytic hydrogen evolution reaction with high solar-to-hydrogen efficiency driven by the Sb2S3 monolayer and Rul2/Sb2S3 heterostructure with solar light. Journal of Power Sources, 2022, 532, 231352.	4.0	40
12	The SiPb monolayer with high thermoelectric performance at room temperature. Surfaces and Interfaces, 2022, 30, 101831.	1.5	1
13	Two-dimensional Sc2CCl2/SiS2 van der Waals heterostructure with high solar power conversion efficiency. Applied Surface Science, 2022, 591, 153232.	3.1	8
14	Theoretical study on some carbohelicenes dyes with tunable emission wavelength: Optical properties, vibronic effect, quantum yield. Dyes and Pigments, 2022, 204, 110407.	2.0	3
15	The effect of intramolecular and intermolecular charge transfers on the third order nonlinear optical properties of the selfâ°assemble chromophores. Journal of Luminescence, 2022, , 118991.	1.5	1
16	Two-dimensional TeX(X=C, Si, Ge) monolayers with strong intrinsic electric field for efficiency hydrogen evolution reaction. Surfaces and Interfaces, 2022, 31, 102011.	1.5	4
17	Aggregation behavior of partially contacted graphene sheets in six-carbon alkanes: all-atom molecular dynamics simulation. Journal of Molecular Modeling, 2022, 28, .	0.8	1
18	Evaluate dimensionless figure of merit for thermoelectric materials based on the intrinsic carrier concentration and bipolar effect. Materials Today Communications, 2022, , 103760.	0.9	0

#	Article	IF	Citations
19	Spectroscopic constants and anharmonic force field of dithioformic acid and its isomers: a theoretical study. Journal of Molecular Modeling, 2022, 28, .	0.8	1
20	The spectral-shapes of absorption, emission, ECD and CPL of a fluorene-fused [7]helicene: Vibronic effect and solvent inhomogenous broadening. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119293.	2.0	3
21	Direct laser cooling the NH molecule with the pseudo-closed loop triplet-triplet transition including intervening electronic states. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119229.	2.0	4
22	Direct laser cooling schemes for the triatomic SOH and SeOH molecules based on <i>ab initio</i> electronic properties. Physical Chemistry Chemical Physics, 2021, 23, 2392-2397.	1.3	4
23	The high power conversion efficiency of a two-dimensional GeSe/AsP van der Waals heterostructure for solar energy cells. Physical Chemistry Chemical Physics, 2021, 23, 6042-6050.	1.3	22
24	Ab initio study of spectroscopic properties at anharmonic force fields of LiNH2. Journal of Molecular Modeling, 2021, 27, 33.	0.8	2
25	Two-dimensional heterostructures of AuSe/SnS for the photocatalytic hydrogen evolution reaction with a Z-scheme. Journal of Materials Chemistry C, 2021, 9, 12231-12238.	2.7	61
26	Thermoelectric performance of BaBiNa and SrBiNa: A first-principle study. Materials Today Communications, 2021, 26, 101971.	0.9	3
27	High thermoelectric efficiency fluoride perovskite materials of AgMF3 (MÂ= Zn, Cd). Materials Today Energy, 2021, 19, 100611.	2.5	12
28	Photophysical investigation of maleimide units substituted [5]carbohelicene derivatives: Absorption, emission, ECD and CPL spectral-shapes. Journal of Luminescence, 2021, 233, 117894.	1.5	3
29	Ab initio study of spectroscopic properties and anharmonic force fields of MNH2 (MÂ=ÂLi, Na, K). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119591.	2.0	2
30	Spectroscopic properties of the low-lying electronic states and laser cooling feasibility for the Srl molecule. Chinese Journal of Physics, 2021, 71, 435-443.	2.0	3
31	Ultrafast Photoisomerization of N-(2-Methoxybenzylidene)aniline: Nonadiabatic Surface-Hopping Study. Journal of Physical Chemistry A, 2021, 125, 7151-7160.	1.1	2
32	Theoretical study on the spectroscopic properties of the low-lying electronic states and the laser cooling feasibility of the Cal molecule. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107709.	1.1	6
33	Halogen Edge-Passivated Antimonene Nanoribbons for Photocatalytic Hydrogen Evolution Reaction with High Solar-to-Hydrogen Conversion. Journal of Physical Chemistry C, 2021, 125, 21341-21351.	1.5	12
34	Newfound two-dimensional Bi2Se3 monolayers for driving hydrogen evolution reaction with the visible-light. Applied Surface Science, 2021, 564, 150389.	3.1	7
35	Rovibrational spectroscopic constants and anharmonic force fields of CH3AsH2 and CH2AsH3: An study. Chemical Physics Letters, 2021, 780, 138917.	1.2	1
36	Vibronic effect explains ECD spectral shape and tunability of CPL wavelength of two triarylborane-based [5]helicenes derivatives. Journal of Luminescence, 2021, 239, 118374.	1.5	6

#	Article	IF	Citations
37	Two-dimensional SiMI4(MÂ=ÂGe, Sn) monolayers as visible-light-driven photocatalyst of hydrogen production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120013.	2.0	8
38	Vibrationally resolved absorption and emission spectral shapes of one 5-carbohelicene derivative: A theoretical study. Chemical Physics Letters, 2021, 783, 139067.	1.2	0
39	First-principles investigation on the thermoelectric performance of half-Heusler compound CuLiX(X = Se, Te). Journal of Physics Condensed Matter, 2021, 33, 095501.	0.7	12
40	Intra-Molecular Electrical Field Regulated Nonlinear Catalyst Charge Transfer in the Organic Conjugated Molecular System. Catalysts, 2021, 11, 1375.	1.6	0
41	Two-dimensional BiP3 with high carrier mobility and moderate band gap for hydrogen generation from water splitting. Applied Surface Science, 2020, 501, 144263.	3.1	59
42	The spectroscopic properties of the low-lying excited states and laser cooling scheme of SrBr molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117721.	2.0	4
43	Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca). ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	4.0	39
44	The influence of the isotope substitution on the $O\hat{A}+\hat{A}LiH+/LiD+$ reactions. Chemical Physics Letters, 2020, 740, 137044.	1.2	2
45	Theoretical study on the low-lying electronic excited states and laser cooling feasibility of AuH molecule. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 242, 106770.	1.1	5
46	Remarkable High Thermoelectric Conversion Efficiency Materials of BeMF $<$ sub $>$ 3 $<$ /sub $>$ (M = Al, Y). Advanced Theory and Simulations, 2020, 3, 2000171.	1.3	9
47	2D XBiSe3(XÂ=ÂAs, Sb) monolayers with high anisotropic mobility and enhanced optical absorption in visible light region. Applied Surface Science, 2020, 530, 147137.	3.1	13
48	Ab initio study on the molecular structure and spectroscopic properties of isomers of SO3. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118746.	2.0	6
49	Insights for vibronic effects on spectral shapes of electronic circular dichroism and circularly polarized luminescence of aza[7]helicene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118475.	2.0	15
50	Size Dependence of $[\langle i\rangle n\langle i\rangle]$ Cycloparaphenylenes ($\langle i\rangle n\langle i\rangle = 9$ â \in "20): Relationship between Aromaticity and Third-Order Nonlinear Optical Properties. Journal of Physical Chemistry C, 2020, 124, 11081-11091.	1.5	16
51	Photocatalytic water splitting for hydrogen generation driven by tetragonal, trigonal, hexagonal and cubic LiCoO2 and visible light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118459.	2.0	5
52	Two-dimensional hexaphosphate BiMP6 (MÂ=ÂAl, Ga, In) with desirable band gaps and ultrahigh carrier mobility for photocatalytic hydrogen evolution. Applied Surface Science, 2020, 517, 146166.	3.1	34
53	Sil2 monolayer as a promising photocatalyst for water splitting hydrogen production under the irradiation of solar light. International Journal of Hydrogen Energy, 2020, 45, 17517-17524.	3.8	21
54	Numerical simulation of temperature field in crack of supercritical carbon dioxide fracturing. Energy Science and Engineering, 2020, 8, 2141-2150.	1.9	6

#	Article	IF	CITATIONS
55	Rational design of graphene slit as nano check valve. Carbon, 2020, 163, 113-119.	5.4	2
56	Theoretical study of surface-enhanced Raman scattering mechanism of scandium-doped copper/silver clusters. Nanotechnology, 2020, 31, 285201.	1.3	1
57	2D AlP ₃ with high carrier mobility and tunable band structure. Journal of Physics Condensed Matter, 2020, 32, 055001.	0.7	19
58	Studies on spectroscopic constants for H2PO and D2PO free radicals. Chemical Physics Letters, 2020, 754, 137750.	1.2	2
59	Two-dimensional Bi2Se3 monolayer with high mobility and enhanced optical absorption in the UV–visible light region. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114272.	1.3	20
60	Vibrationally resolved electronic circular dichroism and circularly polarized luminescence spectra of a boron-fused double helicene: A theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 231, 118132.	2.0	10
61	ZnCdO2 monolayer — A complex 2D structure of ZnO and CdO monolayers for photocatalytic water splitting driven by visible-light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 230, 118068.	2.0	6
62	Ternary chalcogenides XGaS ₂ (X = Ag or Cu) for photocatalytic hydrogen generation from water splitting under irradiation of visible light. International Journal of Quantum Chemistry, 2020, 120, e26166.	1.0	6
63	High thermoelectric figure of merit and thermopower of HfTe ₅ at room temperature. Journal of Physics Condensed Matter, 2020, 32, 345501.	0.7	3
64	Theoretical Simulations of Heavy-Atom Kinetic Isotope Effects in Aliphatic Claisen Rearrangement. Journal of Physical Chemistry A, 2020, 124, 10678-10686.	1.1	1
65	Theoretical studies on the feasibility of the hybrid nanocomposites of graphene quantum dot and phenoxazine-based dyes as an efficient sensitizer for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 216-223.	2.0	23
66	First-principles insight on elastic, electronic, and thermoelectric transport properties of BAgX (X†=†Ti,) Tj ETQ	199.80 rgl	BT /Overlock 12
67	High mobility and photocatalytic properties of NaXO2(X=Co, Rh, Ir). Vacuum, 2019, 168, 108824.	1.6	7
68	Spectroscopic constants and anharmonic force fields of F2SO: An ab inito study. Chemical Physics Letters, 2019, 736, 136814.	1.2	1
69	Strain effect on the electronic and optical properties of ATaO2N ($A\hat{a}\in \infty=\hat{a}\in \infty$ Ca, Sr, and Ba): insights from the first-principles. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
70	Effects of transport direction and carrier concentration on the thermoelectric properties of AgIn5Te8: A first-principles study. Materials Research Bulletin, 2019, 113, 77-83.	2.7	6
71	Anharmonic force fields and spectroscopic constants of H2AsO: An ab initio study. Main Group Chemistry, 2019, 18, 123-137.	0.4	1
72	Theoretical insight on the nanocomposite of tetraphenylporphyrin- graphene oxide quantum dot as a sensitizer of DSSC. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 24-31.	2.0	15

#	Article	IF	CITATIONS
73	Theoretical insight into the effect of Si-doped sites on the photocatalytic properties of SrTiO3. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	4
74	Theoretical insight on hybrid nanocomposites of graphene quantum dot and carbazole–carbazole dyes as an efficient sensitizer of DSSC. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 69-75.	2.0	14
75	Pt4 cluster catalyzes H2 generation from an H2O molecule. Chemical Physics Letters, 2019, 725, 97-101.	1.2	12
76	Effect of M elements (M  =  Ti, Zr, and Hf) on thermoelectric performance of the half-Heusler compounds MCoBi. Journal Physics D: Applied Physics, 2019, 52, 255501.	1.3	26
77	Volume-conserving photoisomerization of a nonplanar GFP chromophore derivative: Nonadiabatic dynamics simulation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 86-94.	2.0	2
78	Lateral scaling and positioning effects of top-gate electrodes on single-molecule field-effect transistors. Journal of Physics Condensed Matter, 2019, 31, 285302.	0.7	2
79	Theoretical study on the low-lying excited electronic states and laser cooling feasibility of CuH molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 212, 55-60.	2.0	5
80	Photocatalytic hydrogen production from water splitting with N-doped \hat{l}^2 -Ga2O3 and visible light. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 71-78.	2.0	23
81	Theoretical insight into the optoelectronic properties of lead-free perovskite derivatives of Cs3Sb2X9 (X = Cl, Br, I). Journal of Materials Science, 2019, 54, 4732-4741.	1.7	42
82	A new potential energy surface of the LiHO+ system and the dynamics studies of the O†+†LiH+ reaction. Chemical Physics Letters, 2019, 715, 123-128.	1.2	2
83	Chalcogens doped BaTiO3 for visible light photocatalytic hydrogen production from water splitting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 208, 65-72.	2.0	36
84	O-doped behavior impacts on the optical and mechanical properties of Pmm2-BC2N. Journal of Materials Science, 2019, 54, 457-466.	1.7	5
85	Mechanism of Fluorescence Quenching by Acylamino Twist in the Excited State for 1-(Acylamino)anthraquinones. Journal of Physical Chemistry A, 2018, 122, 2864-2870.	1.1	27
86	OPE molecular junction as a hydrogen gas sensor. Current Applied Physics, 2018, 18, 273-279.	1.1	4
87	Theoretical studies on the possible sensitizers of DSSC: Nanocomposites of graphene quantum dot hybrid phthalocyanine/tetrabenzoporphyrin/tetrabenzotriazaporphyrins/cis-tetrabenzodiazaporphyrins/tetrabenzomono and their Cu-metallated macrocycles. Spectrochimica Acta - Part A: Molecular and Biomolecular	aza p orphy	yri n o
88	Spectroscopy, 2018, 195, 176-103. Computational studies on the absorption enhancement of nanocomposites of tetraphenylporphyrin and graphene quantum dot as sensitizers in solar cell. Journal of Materials Science, 2018, 53, 5140-5150.	1.7	14
89	AgKTe: An intrinsic semiconductor material with high thermoelectric properties at room temperature. Journal of Alloys and Compounds, 2018, 739, 35-40.	2.8	14
90	The effect of benzoâ€annelation on intermolecular hydrogen bond and proton transfer of 2â€methylâ€3â€hydroxyâ€4(<scp><i>1H</i></scp>)â€quinolone in methanol: A <scp>TDâ€DFT</scp> study. Journelle de la companie Chemistry, 2018, 31, e3803.	urmoa∳of	5

#	Article	IF	CITATIONS
91	Enhancement of the optical absorption of carbon group elements doped ZnS in the visible light range. Renewable Energy, 2018 , 117 , $22-27$.	4.3	30
92	Nonadiabatic dynamics simulation of photoisomerization mechanism of the second stablest isomer of N-salicilydenemethylfurylamine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 315-324.	2.0	7
93	DFT calculations for anharmonic force field and spectroscopic constants of YC2 and its 13C isotopologues. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 382-388.	2.0	8
94	The ground and low-lying excited states and feasibility of laser cooling for GaH+ and InH+ cations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 78-86.	2.0	5
95	Group-IVA element-doped SrIn2O4 as potential materials for hydrogen production from water splitting with solar energy. RSC Advances, 2018, 8, 32317-32324.	1.7	0
96	The theoretical study of the ground and excited states properties for F2BO and H2BO free radicals. AIP Advances, 2018, 8, 055021.	0.6	1
97	Constructing Sensitive and Fast Lead-Free Single-Crystalline Perovskite Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 3087-3092.	2.1	92
98	A theoretical study on the laser cooling scheme for the three-energy-level system of the CN molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 155102.	0.6	3
99	Te-doped perovskite NaTaO3 as a promising photocatalytic material for hydrogen production from water splitting driven by visible light. Materials Research Bulletin, 2018, 107, 125-131.	2.7	31
100	The ketoâ†'enol photoisomerization of <i>N</i> â€salicilydenemethylfurylamine: Nonadiabatic ab initio dynamics simulation. International Journal of Quantum Chemistry, 2018, 118, e25656.	1.0	1
101	Ultrafasttrans-cisphotoisomerization of the neutral chromophore in green fluorescent proteins: Surface-hopping dynamics simulation. Journal of Chemical Physics, 2018, 149, 074304.	1.2	4
102	Optical absorption enhancement of Hg-doped ZnX (X= S, Se) for hydrogen production from water splitting driven by solar energy. Vacuum, 2018, 157, 36-44.	1.6	5
103	Hydrogen generation from water molecule with Pt7 clusters. International Journal of Hydrogen Energy, 2017, 42, 4032-4039.	3.8	19
104	Negative differential resistance and switch behavior of T-B N (x, $y=5$, 6, 11) molecular junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1493-1497.	0.9	1
105	Electronic and optical properties of superhard C–N materials: a first-principles study. Journal of Computational Electronics, 2017, 16, 262-271.	1.3	4
106	The low-lying electronic states and optical schemes for the laser cooling of the BH + and BH \hat{a} ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 130-135.	2.0	16
107	Spectroscopic parameters of the low-lying electronic states and laser cooling feasibility of NH + cation and NH â^' anion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 185, 365-370.	2.0	16
108	Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection. Journal of Alloys and Compounds, 2017, 720, 139-146.	2.8	16

#	Article	IF	CITATIONS
109	Nonadiabaticab initiomolecular dynamics study of photoisomerization inN-salicilydenemethylfurylamine (SMFA). Journal of Chemical Physics, 2017, 146, 124312.	1.2	13
110	Reply to "Comment on â€~Gamma-ray spectra from low-energy positron annihilation processes in molecules' ― Physical Review A, 2017, 95, .	1.0	0
111	The large absorption coefficient and photoconductivity of oP12-FeB2 high hard material: A first-principles study. Optik, 2017, 138, 160-165.	1.4	2
112	Adsorption and Dissociation of H2 on Cluster Al6N. Journal of Cluster Science, 2017, 28, 1335-1344.	1.7	3
113	Concerted Mechanisms of Excited-State Proton Intramolecular Transfer for Bis-2,4-(2-benzoxazolyl)-hydroquinone and Its Derivatives. Journal of Physical Chemistry A, 2017, 121, 8217-8226.	1.1	6
114	Symmetry-broken effects on electron momentum spectroscopy caused by adiabatic vibration. Chemical Physics Letters, 2017, 687, 116-124.	1.2	2
115	<i>Ab Initio</i> Studies on Spectroscopic Constants for the HAsO Molecule. Journal of Physical Chemistry A, 2017, 121, 7009-7015.	1.1	7
116	First-principles study on the electronic and optical properties of WS2 and MoS2 monolayers. Chinese Journal of Physics, 2017, 55, 1930-1937.	2.0	36
117	Effect of Ti doping on mechanical and optical properties of super-hard I2d-CN2 materials. RSC Advances, 2017, 7, 37943-37951.	1.7	3
118	Computational anharmonic force fields of CuSH and CuSD. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 155102.	0.6	5
119	Structural, Electronic, and Optical Properties of Superhard Materials tP10-FeB4 and I4 1 /acd-FeB4. Journal of Electronic Materials, 2017, 46, 2506-2511.	1.0	1
120	Enhanced photocatalytic performance of anatase TiO 2 substitutionally co-doped with La and N. Solar Energy Materials and Solar Cells, 2017, 170, 233-238.	3.0	12
121	Pristine and Se-/In-doped TlAsS2 enhance the solar energy-driven water splitting for hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 15464-15470.	3.8	12
122	Theoretical research on bandgap of H-saturated Galâ^'xAlxN nanowires. International Journal of Modern Physics B, 2017, 31, 1650252.	1.0	4
123	Gamma-ray spectra from low-energy positron annihilation processes in molecules. Physical Review A, 2016, 94, .	1.0	3
124	The spectroscopic constants and anharmonic force field of AgSH: An ab initio study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 164, 89-92.	2.0	6
125	Generating H2 from a H2O molecule by catalysis using a small Al6Cu cluster. Energy, 2016, 106, 131-136.	4.5	26
126	Effects of collision energy on the stereodynamics of the reaction O + H2+ \hat{a} † OH + H+. Chemical Physics, 2016, 472, 156-162.	0.9	2

#	Article	IF	CITATIONS
127	Near-infrared photocathode In0.53Ga0.47As doped with zinc: A first principle study. Optik, 2016, 127, 1268-1271.	1.4	4
128	Uniaxial strain effects on the optoelectronic properties of GaN nanowires. Superlattices and Microstructures, 2016, 97, 327-334.	1.4	25
129	Study of Cs adsorption on (100) surface of [001]-oriented GaN nanowires: A first principle research. Applied Surface Science, 2016, 387, 1110-1115.	3.1	46
130	Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation. Modern Physics Letters B, 2016, 30, 1650339.	1.0	3
131	Extraction of H2 from H2O molecule using a small Al6Si cluster. International Journal of Hydrogen Energy, 2016, 41, 17858-17863.	3.8	25
132	A first-principles study of the effects of different Al constituents on Galâ^'xAlxN nanowires. International Journal of Modern Physics B, 2016, 30, 1650217.	1.0	3
133	Enhancement of absorption and conductivity of CdS in the infrared range with Cu dopant. Materials Chemistry and Physics, 2016, 183, 349-355.	2.0	12
134	First-principle study on electronic structure and optical properties of GaN nanowires with different cross-sections. International Journal of Modern Physics B, 2016, 30, 1650136.	1.0	3
135	Research on optoelectronic properties of GaN nanowires with N vacancy. Computational and Theoretical Chemistry, 2016, 1092, 19-24.	1.1	5
136	Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH ₃ NH ₃ PbBr ₃ Microdisks. ACS Applied Materials & Amp; Interfaces, 2016, 8, 19587-19592.	4.0	54
137	Optoelectronic properties of Mg doping GaN nanowires. Optical and Quantum Electronics, 2016, 48, 1.	1.5	5
138	Ab initio studies on the spin-forbidden cooling transitions of the LiRb molecule. Physical Chemistry Chemical Physics, 2016, 18, 19838-19846.	1.3	23
139	Influence of Zn doping on the early activation stage of GaAlAs photocathodes: A density functional theory research. Optik, 2016, 127, 3065-3068.	1.4	1
140	Electron affinity of GaN(0001) surface doped with Al, Mg. Optik, 2016, 127, 3624-3628.	1.4	4
141	Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 488-495.	2.0	8
142	Theoretical study on stereodynamics of H + NeH ⁺ (v=0, j=0) → NeH ⁺ +H reaction. The Journal of Atomic and Molecular Sciences, 2016, 7, 104-114.	0.1	2
143	Theoretical investigation of the laser cooling of a LiBe molecule. Physical Review A, 2015, 92, .	1.0	31
144	Cesium, oxygen coadsorption on AlGaN(0001) surface: experimental research and ab initio calculations. Journal of Materials Science: Materials in Electronics, 2015, 26, 2181-2188.	1.1	6

#	Article	IF	CITATIONS
145	Theoretical study of cesium and oxygen activation processes on GaN (0001) surface. Materials Science in Semiconductor Processing, 2015, 39, 61-66.	1.9	10
146	Cesium adsorption on In0.53Ga0.47As (100) \hat{I}^2 2 (2 \tilde{A} —4) surface: A first-principles research. Applied Surface Science, 2015, 324, 547-553.	3.1	6
147	A DFT study of atomic geometry and electronic structures for oxidized Al0.25Ga0.75N (001) (2×2) reconstruction surfaces. Applied Surface Science, 2015, 333, 201-206.	3.1	7
148	Optical properties of Ga0.75Al0.25N with interstitial defects. Optik, 2015, 126, 3349-3352.	1.4	2
149	Novel optical properties of Î ³ -Si3N4 with B dopant. Materials Chemistry and Physics, 2015, 161, 170-174.	2.0	1
150	Theoretical investigation of adsorption and dissociation of H2 on cluster Al6Si. International Journal of Hydrogen Energy, 2015, 40, 8911-8916.	3.8	23
151	Electronic structure and optical properties of bulk In0.53Ga0.47As for near-infrared photocathode. Optik, 2015, 126, 1061-1065.	1.4	3
152	Atomic geometry and electronic structures of Be-doped and Be-, O-codoped Ga0.75Al0.25N. Computational Materials Science, 2015, 99, 306-315.	1.4	8
153	Theoretical study of spectroscopic constants and anharmonic force field of SiF2. Journal of Molecular Modeling, 2015, 21, 108.	0.8	8
154	Electronic transport properties of tetracyclopentadienyl modified with C and Si atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1726-1731.	0.9	2
155	FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection. Zygote, 2015, 23, 336-341.	0.5	4
156	Optoelectronic properties of GaN, AlN, and GaAlN alloys. Optik, 2015, 126, 3357-3361.	1.4	13
157	Construction of analytic functions for the potential energy curves, dipole moments, and transition dipole moments of RbBe and CsBe molecules. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 165, 56-67.	1.1	11
158	Controlling the electronic transport properties of the tetrapyrimidinyl molecule with atom modified sulfur bridge. RSC Advances, 2015, 5, 10675-10679.	1.7	5
159	Atomic geometry and electronic structure of Al0.25Ga0.75N(0001) surfaces covered with different coverages of cesium: A first-principle research. Applied Surface Science, 2015, 326, 251-256.	3.1	15
160	Research on Cs activation mechanism for Ga0.5Al0.5As(001) and GaN(0001) surface. Applied Surface Science, 2015, 324, 300-303.	3.1	15
161	Enhancing the visible-light absorption of TiO2 with the use of key N, Co, and Na dopant concentrations. Solar Energy Materials and Solar Cells, 2015, 132, 94-100.	3.0	14
162	EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS TO A FOURTH-ORDER DEGENERATE PARABOLIC EQUATION. Bulletin of the Korean Mathematical Society, 2015, 52, 1059-1068.	0.3	0

#	Article	IF	CITATIONS
163	Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface. Scientific World Journal, The, 2014, 2014, 1-6.	0.8	6
164	Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S ($\langle sup \rangle 3 \langle sup \rangle P$) + H $\langle sub \rangle 2 \langle sub \rangle 2 \langle sub \rangle 3 \rangle H$ + H. Chinese Physics B, 2014, 23, 068201.	0.7	0
165	Tuning the band gap and optical properties of Î ³ -Si3N4 with rare earth element Ce. RSC Advances, 2014, 4, 55452-55458.	1.7	5
166	Nonbond interactions between graphene nanosheets and polymers: a computational study. E-Polymers, 2014, 14, 169-176.	1.3	3
167	The adsorption of Cs and residual gases on Ga0.5Al0.5As (001) \hat{I}^2 2 (2 \tilde{A} —4) surface: A first principles research. Applied Surface Science, 2014, 290, 142-147.	3.1	15
168	Comparison of optical properties between Wurtzite and zinc-blende Ga0.75Al0.25N. Optik, 2014, 125, 424-427.	1.4	29
169	The novel optical properties of CdS caused by concentration of impurity Co. Journal of Alloys and Compounds, 2014, 585, 503-509.	2.8	45
170	Research on electronic structure and optical properties of Mg doped Ga0.75Al0.25N. Optical Materials, 2014, 36, 787-796.	1.7	22
171	First-principles studies of electronic structure and optical properties of GaN surface doped with Si. Optik, 2014, 125, 2234-2238.	1.4	6
172	A thin film equation with a singular diffusion. Applied Mathematics and Computation, 2014, 227, 1-10.	1.4	5
173	Effects of the collision energy on the stereodynamics of the reaction: S(3P)+H2 (v=0, j=0)→SH+H. Chemical Physics, 2014, 429, 51-56.	0.9	3
174	Study of the optical-electrical characteristics of In Galâ^'N alloy with low in doping. Optik, 2014, 125, 6909-6913.	1.4	0
175	Spontaneous nanoinjection with carbon nanotubes: a molecular dynamics simulation study. Journal of Materials Chemistry B, 2014, 2, 859-867.	2.9	4
176	Ab Initio Study on the Ground and Low-Lying States of BAlk (Alk = Li, Na, K) Molecules. Journal of Physical Chemistry A, 2014, 118, 9148-9156.	1.1	1
177	Theoretical research on optical properties and quantum efficiency of Galâ^'Al N photocathodes. Optik, 2014, 125, 4906-4910.	1.4	0
178	Dynamic Mechanism of Single-Stranded DNA Encapsulated into Single-Wall Carbon Nanotubes: A Molecular Dynamics Simulation Study. Journal of the Physical Society of Japan, 2014, 83, 024801.	0.7	1
179	Effects of collision energy on stereodynamics of N(2D)+D2(X1Σg+)â†'ND(X3Σâ^')+D(2S) reaction. Computational and Theoretical Chemistry, 2014, 1046, 25-29.	1.1	3
180	Novel properties of Î ³ -Si3N4 with C, O and F dopants. Journal of Alloys and Compounds, 2014, 617, 518-524.	2.8	3

#	Article	IF	CITATIONS
181	Energy gap tuning and optical properties of \hat{I}^3 -Si3N4 doped with Fe, Co and Ni. Materials Science in Semiconductor Processing, 2014, 27, 474-481.	1.9	4
182	Theoretical study of spectroscopic constants and anharmonic force field of formaldehyde. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450049.	1.8	4
183	Geometric and electronic structure of Cs adsorbed Ga0.5Al0.5As (001) and (011) surfaces: a first principles research. Journal of Materials Science: Materials in Electronics, 2014, 25, 2595-2600.	1.1	3
184	Controllable low-bias negative differential resistance, switching, and rectifying behaviors of dipyrimidinyl–diphenyl induced by contact mode. Physica B: Condensed Matter, 2014, 434, 32-37.	1.3	18
185	First principles research on electronic structure of Zn-doped Ga0.5Al0.5As (001) \hat{I}^2 2 (2 \hat{A} —4) surface. Solid State Communications, 2014, 187, 13-17.	0.9	3
186	Electronic structure and optical properties of nonpolar Ga0.75Al0.25N surfaces. Optik, 2014, 125, 6260-6265.	1.4	1
187	The study of the optical properties of the GaAs with point defects. Optik, 2014, 125, 419-423.	1.4	2
188	First principles study on the influence of vacancy defects on electronic structure and optical properties of Ga0.5Al0.5As photocathodes. Optik, 2014, 125, 587-592.	1.4	9
189	Theoretical study on electronic and optical properties of ln0.53Ga0.47As (100) \hat{l}^2 2 (2 \tilde{A} —4) surface. Applied Surface Science, 2014, 288, 238-243.	3.1	9
190	Cs adsorption on Ga0.5Al0.5As(001) \hat{l}^2 2 (2 \tilde{A} —4) surface: A first-principles research. Computational Materials Science, 2014, 84, 226-231.	1.4	12
191	Effects of silica surface on the ordered orientation of polyethylene: A molecular dynamics study. Applied Surface Science, 2014, 311, 273-278.	3.1	8
192	Dynamic mechanism of HIV replication inhibitor peptide encapsulated into carbon nanotubes. Current Applied Physics, 2013, 13, 1001-1007.	1.1	10
193	Geometry and electronic structure of the Zn-doped GaAs (100) Î ² 2(2×4) surface: A first-principle study. Applied Surface Science, 2013, 283, 954-957.	3.1	14
194	Study on the electron structure and optical properties of Ga0.5Al0.5As(100) $\hat{i}^22(2\tilde{A}-4)$ reconstruction surface. Applied Surface Science, 2013, 266, 380-385.	3.1	18
195	Effect of doping Fe and Si on electronic structure and optical Properties of CdS. Physica B: Condensed Matter, 2013, 417, 17-23.	1.3	11
196	The effects of collision energy and reagent vibrational excitation on the reactivity of the reaction H+LiH: A quasiclassical trajectory study. Computational and Theoretical Chemistry, 2013, 1006, 31-36.	1.1	7
197	Theoretical study on optoelectronic properties of Ga0.75Al0.25N (001) reconstruction surfaces. Applied Surface Science, 2013, 287, 1-7.	3.1	5
198	The theoretical study of the ground electronic states of GaX (X=F,Cl, and Br) molecules. Computational and Theoretical Chemistry, 2013, 1016, 42-47.	1.1	3

#	Article	IF	Citations
199	Study of Cs adsorption on Ga(Mg)0.75Al0.25N (0001) surface: A first principle calculation. Applied Surface Science, 2013, 282, 308-314.	3.1	31
200	Influence of collision energy and reagent vibrational excitation on the stereodynamics of the reaction H + LiH \hat{a}^{\dagger} H2+ Li. Chemical Physics, 2013, 415, 8-13.	0.9	7
201	First-principles analysis of the effect of contact sites on electronic transport properties of diaminofluorene. Physica B: Condensed Matter, 2013, 417, 70-74.	1.3	7
202	First principles calculations of the electronic structure and optical properties of (001), (011) and (111) Ga0.5Al0.5As surfaces. Materials Science in Semiconductor Processing, 2013, 16, 1813-1820.	1.9	11
203	Electronic structure of Zn doped Ga0.5Al0.5As photocathodes from first-principles. Solid State Communications, 2013, 164, 50-53.	0.9	7
204	Effects of electrode orientation on the transport properties of pyridine-terminated dithienylethene light molecule switch under bias. Solid State Communications, 2013, 153, 1-7.	0.9	5
205	Quasi-Classical Trajectory Study of the N(2D) + H2(X1ΣG+) → NH(X3Σ–) + H(2S) Reaction Based on an Analytical Potential Energy Surface. Journal of Physical Chemistry A, 2013, 117, 3-8.	1.1	8
206	The effect of inner-shell electrons on the ground and low-lying excited states of KLi: Ab initio study with all-electron basis sets. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 129, 8-14.	1.1	5
207	Potential energy curve study on the 3 \hat{I} electronic states of Ga X (X = F, Cl, and Br) molecules. Chinese Physics B, 2013, 22, 123401.	0.7	1
208	Electronic structure and optical properties of Al and Mg co-doped GaN. Chinese Physics B, 2013, 22, 117103.	0.7	11
209	A full-dimensional analytical potential energy surface for the F+CH ₄ →HF + CH ₃ reaction. Chinese Physics B, 2013, 22, 063102.	0.7	1
210	An ab initio study of the ground and low-lying excited states of KBe with the effect of inner-shell electrons. Journal of Chemical Physics, 2013, 139, 074305.	1.2	13
211	The influence of femtosecond laser parameters on the wavepacket and population of the diabatic excited states of NaLi. Molecular Physics, 2013, 111, 61-71.	0.8	4
212	The effect of collision energy on the stereodynamics of the reaction $H(\sup 2< \sup S) + NH(X<\sup 3< \sup 2^i 2< \sup 2^i 2< \sup 2^i 2< \sup 2< \sup$	0.7	0
213	THE STUDY OF THE PROPERTIES OF THE GROUND- AND LOW-LYING EXCITED STATES OF ASH $<$ sub $>2sub>, $\{m ASH\}_{2}^{+}$ AND \{m ASH\}_{2}^{-}$. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250115.$	1.8	3
214	DENSITY FUNCTIONAL THEORY STUDIES OF SPECTROSCOPIC CONSTANTS AND ANHARMONIC FORCE FIELD OF O³⁵ClO . Journal of Theoretical and Computational Chemistry, 2013, 12, 1250117.	1.8	6
215	Reprogramming of Round Spermatids by the Germinal Vesicle Cytoplasm in Mice. PLoS ONE, 2013, 8, e78437.	1.1	1
216	Influence of the reagent vibration on the stereo-dynamics of the reactions D ^{â^'} + H ₂ and H ^{â^'} + D ₂ . Chinese Physics B, 2012, 21, 023402.	0.7	8

#	Article	IF	CITATIONS
217	Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (0001Ì,,) surfaces. Chinese Physics B, 2012, 21, 067103.	0.7	6
218	Isotope effects on product polarization and reaction mechanism in the Li+HF(ν =0,j=0)→LiF+H reaction. Chemical Physics, 2012, 405, 155-160.	0.9	4
219	Electronic structure and optical properties of zinc-blende GaN. Optik, 2012, 123, 2208-2212.	1.4	40
220	Effect of functionalization on the interfacial binding energy of carbon nanotube/nylon 6 nanocomposites: a molecular dynamics study. RSC Advances, 2012, 2, 2836.	1.7	29
221	Theoretical study of Cs adsorption on GaN(0001) surface. Applied Surface Science, 2012, 258, 7425-7429.	3.1	54
222	The analytical potential energy functions, spectroscopic parameters and ro-vibrational spectra of SH+ molecule. Computational and Theoretical Chemistry, 2012, 979, 44-48.	1.1	7
223	The translocation of DNA oligonucleotide with the water stream in carbon nanotubes. Computational and Theoretical Chemistry, 2012, 991, 93-97.	1.1	4
224	Isothermal Crystallization of Short Polymer Chains Induced by the Oriented Slab and the Stretched Bundle of Polymer: A Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2012, 116, 2040-2047.	1.2	8
225	Analytical potential energy functions and spectroscopic properties for the ground and low-lying excited states of KRb. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 57-61.	2.0	10
226	Stereodynamics of the reactions Ne+H ⁺ ₂ /Ne+T ₂ . Chinese Physics B, 2012, 21, 043101.	0.7	14
227	Dynamic mechanism for encapsulating two HIV replication inhibitor peptides with carbon nanotubes. Chinese Physics B, 2012, 21, 083103.	0.7	4
228	Orientation effect on the electronic transport properties of C24 fullerene molecule. Physica B: Condensed Matter, 2012, 407, 2247-2253.	1.3	9
229	Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs. Journal of Chemical Physics, 2011, 135, 134315.	1.2	15
230	Spectroscopic properties and vibrational levels for X2Σ+ and A2Πstates of CS+ molecule: A multi-reference configuration interaction study. Computational and Theoretical Chemistry, 2011, 976, 94-97.	1.1	6
231	Crystallization of alkane melts induced by carbon nanotubes and graphene nanosheets: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2011, 13, 15476.	1.3	99
232	Quasi-classical Trajectory Study of the Ne + H ₂ ⁺ â†' NeH ⁺ + H Reaction Based on Global Potential Energy Surface. Journal of Physical Chemistry A, 2011, 115, 1486-1492.	1.1	17
233	An Idea to Produce Composite Nanowires with Copper Nanoparticles Filling Into Carbon Nanotubes. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2307-2312.	0.4	4
234	Excited-state hydrogen bonding dynamics of methyl isocyanide in methanol solvent: A DFT/TDDFT study. Open Physics, 2011, 9, .	0.8	10

#	Article	IF	CITATIONS
235	Geometrical and Electronic Properties of the Clusters of C20 Cage Doped with Alkali Metal Atoms. Journal of Cluster Science, 2011, 22, 31-39.	1.7	29
236	Isotopic effects on the stereodynamics for the reactions. Chemical Physics, 2011, 379, 46-50.	0.9	8
237	DFT/TDDFT study on the excited-state hydrogen bonding dynamics of hydrogen-bonded complex formed by methyl cyanide and methanol. Computational and Theoretical Chemistry, 2011, 964, 243-247.	1.1	24
238	The SAC/SAC-CI studies of ground and low-lying electronic excited states of OCIO, OCIO+ and OCIOâ^'. Computational and Theoretical Chemistry, 2011, 965, 41-46.	1,1	4
239	High-efficiency storage of lithium with single-walled carbon nanotubes. Computational and Theoretical Chemistry, 2011, 966, 105-112.	1.1	5
240	The geometric structure and electronic properties of Fe3O3+ clusters. Physica B: Condensed Matter, 2011, 406, 200-204.	1.3	8
241	Theoretical Study of the Stereodynamics of the Reaction C($<$ sup>3 $<$ /sup> P)+CH(X $<$ sup>2 $<$ /sup> Î) and Its Isotopic Variants. Chinese Physics Letters, 2011, 28, 063401.	1.3	2
242	The geometric, electronic and magnetic properties of (<i>n </i> + <i>m </i> = 6) clusters: a dens functional theory study. Molecular Physics, 2011, 109, 1889-1899.	ity.8	2
243	Collision Energies Effect on Stereodynamics for Ne + H ⁺ ₂ â†' NeH ⁺ + H Reaction. Chinese Physics Letters, 2011, 28, 013101.	1.3	10
244	<i>AB INITIO</i> STUDY OF SPECTROSCOPIC CONSTANTS AND ANHARMONIC FORCE FIELD OF OF font>AsH sub>2 font>RADICAL Journal of Theoretical and Computational Chemistry, 2011, 10, 849-860.	1.8	4
245	Interactions of Mz–X complexes (M = Cu, Ag, and Au; X = He, Ne, and Ar; and z = ±1). Journal of Chemical Physics, 2011, 134, 024306.	1.2	10
246	Functionalization of diamond (001) $\hat{a}\in 2$ $\tilde{A}-1$ surface by cycloaddition of 1,3 $\hat{a}\in c$ yclohexadiene: A theoretical study. International Journal of Quantum Chemistry, 2010, 110, 1748-1755.	1.0	0
247	Ab initio study of spectroscopic constants and anharmonic force field of FCO2 radical. Computational and Theoretical Chemistry, 2010, 951, 77-81.	1.5	7
248	Structural, electronic, and magnetic properties of (n+m=5) clusters. Computational and Theoretical Chemistry, 2010, 957, 26-30.	1.5	6
249	First-principles study of transport properties of endohedral Li@C20 metallofullerene. Current Applied Physics, 2010, 10, 260-265.	1.1	56
250	<i>Ab initio</i> investigations of the charge transport properties of endohedral <i>M</i> @C ₂₀ (<i>M</i> = Na and K) metallofullerenes. Chinese Physics B, 2010, 113402.	0.7	6
251	Theoretical study on the complexes of He, Ne and Ar. Chinese Physics B, 2010, 19, 123102.	0.7	7

Isotopic effects on stereodynamics for the two reactions: H + LiH+(v = 0, j = 0) \hat{a}^{\dagger} H2 + Li+ and H+ + LiH(v) Tj ETQq0.0 0 rgBT/Overlock

252

#	Article	IF	CITATIONS
253	Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 eV to 10 000 eV. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 665-670.	0.7	О
254	Theoretical characteristics of the bound states of M-X complexes (M=Cu, Ag, and Au, and X=He, Ne, and) Tj ETQ	q0 <u>0 0</u> rgE	3T /Overlock 1
255	First-principles study of structure and quantum transport properties of C20 fullerene. Journal of Chemical Physics, 2009, 131, 024311.	1,2	56
256	Theoretical study of the scavenging mechanism to 1,4-dicarbonyls by pyridoxamine: The water-assisted reaction. Computational and Theoretical Chemistry, 2009, 911, 70-74.	1.5	4
257	The structure elucidation of a new bromophenol metabolite from Polysiphonia urceolata by experimental and DFT theoretical methods. Journal of Molecular Structure, 2009, 929, 1-5.	1.8	9
258	Theoretical characters of the ground states of YbX (X=F, Cl, Br, I, At). Chemical Physics Letters, 2009, 467, 265-269.	1,2	11
259	Investigation of (5,0) carbon nanotube-like boron structures using density functional theory. Chemical Physics Letters, 2009, 474, 311-314.	1,2	3
260	First-Principles Study of Electronic Transport Properties of Dodecahedrane C20H20 and Its Endohedral Complex Li@C20H20. Journal of Physical Chemistry C, 2009, 113, 15756-15760.	1,5	27
261	MRCI potential energy curves and analytical potential energy functions for the X2sum+ and 2prod states of BO molecule. Chinese Optics Letters, 2009, 7, 663-666.	1.3	3
262	Density Functional Theory Studies of Au $<$ sub $<$ ci $>$ n $<$ li> $<$ lsub $>$ ci $>$ n $<$ lsub $>$ ci $>$ ci $>$ n $<$	j ETIQqO 0	0 ngBT /Over
263	The stereodynamics of the two reactions: $H + LiH + (v = 0, j = 0)$ → $H2 + Li + and$ $H+ + LiH(v = 0, j = 0)$ → $H2+ + Li$. Physical Chemistry Chemical Physics, 2009, 11, 10438.	1.3	47
264	Macroscopic local-field effects on photoabsorption processes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2274-2281.	0.9	4
265	Dominant role of the interstitial 4d transition-metal in <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>TM@Zr</mml:mtext></mml:mrow>< (TM = Yâ€"Cd, Z= 0, ±1) icosahedral cages, Chemical Physics Letters, 2008, 457, 49-53.</mml:msubsup></mml:mrow></mml:math>	mml:mro	w> (mml:mr)
266	A comparison of the stereodynamics between the reactions H+HH(D, T) and the reactions Hâ ⁻ '+HH(D, T). Chemical Physics, 2008, 348, 97-102.	0.9	17
267	Ground and low-lying excited states of SO2 studied by the SAC/SAC-CI method. Computational and Theoretical Chemistry, 2008, 859, 7-10.	1.5	10
268	Interactions between Single-Walled Carbon Nanotubes and Polyethylene/Polypropylene/Polystyrene/Poly(phenylacetylene)/Poly(<i>p</i> ponsidering Repeat Unit Arrangements and Conformations:  A Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2008, 112, 1803-1811.	1.5	76
269	Structural, Electronic, and Magnetic Properties of Fe3C2 Cluster. Journal of Physical Chemistry A, 2008, 112, 4556-4561.	1.1	11
270	The recurrence spectra of Rydberg HeH+ molecule ion in a magnetic field. Journal of Chemical Physics, 2008, 129, 104310.	1,2	3

#	Article	IF	CITATIONS
271	First-Principles Study of the Carbon-Oxygen Nanotubes. Journal of Computational and Theoretical Nanoscience, 2008, 5, 608-613.	0.4	O
272	Ab initio study of spectroscopic constants and anharmonic force field of Ge74Cl2. Journal of Chemical Physics, 2007, 126, 194301.	1.2	12
273	Theoretical calculation of the integral cross-sections of the reaction Hâ^' + H2 → H2 +â€% variants. Molecular Physics, 2007, 105, 2329-2333.	‰H â^' 0.8	and its isoto
274	Quasi-classical trajectory study of the cross sections of the reactions of Dâ^'+H2â†'Hâ^'+HD and Hâ^'+D2â†'Dâ^'+HD. Chemical Physics Letters, 2007, 445, 125-128.	1.2	23
275	Density Functional Theory Investigation of Product Distribution following Reaction of Acrylonitrile on Diamond (001)-2×1 Surface. Journal of Physical Chemistry B, 2006, 110, 23395-23402.	1.2	2
276	A density functional theory study on the role of His-107 in arylamine N-acetyltransferase 2 acetylation. Biophysical Chemistry, 2006, 122, 215-220.	1.5	6
277	The molecular structure and vibrational spectra of corrolazine metal complexes (CzM) by density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 795-800.	2.0	6
278	What a Role did Histidine Residue Play in ArylamineN-Acetyltransferase 2 Acetylation? A Quantum Chemistry Study. Chinese Journal of Chemistry, 2006, 24, 1279-1281.	2.6	0
279	Attosecond resolution quantum dynamics between electrons and H2+molecules. Physical Review A, 2006, 74, .	1.0	50
280	A quantum chemical study on the mechanism of glycinamide ribonucleotide transformylase inhibitor: 10-Formyl-5,8,10-trideazafolic acid. Biophysical Chemistry, 2005, 118, 78-83.	1.5	0
281	Molecule dynamics and combined QM/MM study on one-carbon unit transfer reaction catalyzed by GAR transformylase. Open Chemistry, 2005, 3, 674-682.	1.0	1
282	Contactless Deep Level Transient Spectroscopy Using Microwave Reflection. Materials Research Society Symposia Proceedings, 1990, 209, 523.	0.1	2