Zheng Zhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1477832/publications.pdf Version: 2024-02-01

<u> 7немс 7н</u>

#	Article	IF	CITATIONS
1	A Fully Transparent and Flexible Ultraviolet–Visible Photodetector Based on Controlled Electrospun ZnO dO Heterojunction Nanofiber Arrays. Advanced Functional Materials, 2015, 25, 5885-5894.	14.9	181
2	Photophysics in Cs ₃ Cu ₂ X ₅ (X = Cl, Br, or l): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization. Chemistry of Materials, 2020, 32, 3462-3468.	6.7	177
3	MXene–Silicon Van Der Waals Heterostructures for Highâ€5peed Selfâ€Driven Photodetectors. Advanced Electronic Materials, 2017, 3, 1700165.	5.1	162
4	Decorating Perovskite Quantum Dots in TiO ₂ Nanotubes Array for Broadband Response Photodetector. Advanced Functional Materials, 2017, 27, 1703115.	14.9	142
5	Tunable Color Temperatures and Efficient White Emission from Cs ₂ Ag _{1â^²} <i>_x</i> Na <i>_x</i> In _{1â^²} <i>_y</i>	suloo‰a/i>Bi	< 112 sub>y
6	Selfâ€Trapped Exciton to Dopant Energy Transfer in Rare Earth Doped Leadâ€Free Double Perovskite. Advanced Optical Materials, 2019, 7, 1901098.	7.3	94
7	Nanostructured Materials and Architectures for Advanced Infrared Photodetection. Advanced Materials Technologies, 2017, 2, 1700005.	5.8	87
8	Submillimeter and lead-free Cs ₃ Sb ₂ Br ₉ perovskite nanoflakes: inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horizons, 2019, 4, 1372-1379.	8.0	85
9	Spaceâ€Confined Synthesis of 2D Allâ€Inorganic CsPbI ₃ Perovskite Nanosheets for Multiphotonâ€Pumped Lasing. Advanced Optical Materials, 2018, 6, 1800879.	7.3	65
10	MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Letters, 2019, 11, 34.	27.0	49
11	Giantâ€Enhanced SnS ₂ Photodetectors with Broadband Response through Oxygen Plasma Treatment. Advanced Functional Materials, 2020, 30, 2001650.	14.9	48
12	Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. Journal of Materials Chemistry C, 2018, 6, 11266-11271.	5.5	46
13	Spatially Confined Growth of Fullerene to Super‣ong Crystalline Fibers in Supramolecular Gels for Highâ€Performance Photodetector. Advanced Materials, 2019, 31, e1808254.	21.0	42
14	Electrospun nanowire arrays for electronics and optoelectronics. Science China Materials, 2016, 59, 200-216.	6.3	32
15	Controlled Growth of an Mo2C—Graphene Hybrid Film as an Electrode in Self-Powered Two-Sided Mo2C—Graphene/Sb2S0.42Se2.58/TiO2 Photodetectors. Sensors, 2019, 19, 1099.	3.8	28
16	Morphology Processing by Encapsulating GeP ₅ Nanoparticles into Nanofibers toward Enhanced Thermo/Electrochemical Stability. ACS Applied Materials & Interfaces, 2018, 10, 32162-32170.	8.0	19
17	Single-Component MLCT-Active Photodetecting Material Based on a Two-Dimensional Coordination Polymer. CCS Chemistry, 2020, 2, 655-662.	7.8	19
18	Synthesis of highly luminescent Mn-doped CsPbCl3 nanoplatelets for light-emitting diodes. CrystEngComm, 2021, 23, 793-803.	2.6	11

#	Article	IF	CITATIONS
19	Predictive value of single nucleotide polymorphisms in XRCC1 for radiation-induced normal tissue toxicity. OncoTargets and Therapy, 2018, Volume 11, 3901-3918.	2.0	10