Laura Papagno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1477666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8+ T Cells in Elderly Humans. Journal of Immunology, 2022, 208, 562-570.	0.8	15
2	The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro. Scientific Reports, 2020, 10, 11620.	3.3	10
3	New chimeric TLR7/NOD2 agonist is a potent adjuvant to induce mucosal immune responses. EBioMedicine, 2020, 58, 102922.	6.1	19
4	New Insights into Lymphocyte Differentiation and Aging from Telomere Length and Telomerase Activity Measurements. Journal of Immunology, 2019, 202, 1962-1969.	0.8	37
5	The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight, 2019, 4, .	5.0	72
6	Elderly human hematopoietic progenitor cells express cellular senescence markers and are more susceptible to pyroptosis. JCI Insight, 2018, 3, .	5.0	38
7	Cutting Edge: A Dual TLR2 and TLR7 Ligand Induces Highly Potent Humoral and Cell-Mediated Immune Responses. Journal of Immunology, 2017, 198, 4205-4209.	0.8	34
8	Reduced naÃ⁻ve <scp>CD</scp> 8 ⁺ <scp>T</scp> ell priming efficacy in elderly adults. Aging Cell, 2016, 15, 14-21.	6.7	112
9	Preservation of Lymphopoietic Potential and Virus Suppressive Capacity by CD8+ T Cells in HIV-2–Infected Controllers. Journal of Immunology, 2016, 197, 2787-2795.	0.8	19
10	Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. Journal of Experimental Medicine, 2007, 204, 2473-2485.	8.5	655
11	Cell permeabilization for the assessment of T lymphocyte polyfunctional capacity. Journal of Immunological Methods, 2007, 328, 182-188.	1.4	19
12	HIV-specific Cytotoxic T Cells from Long-Term Survivors Select a Unique T Cell Receptor. Journal of Experimental Medicine, 2004, 200, 1547-1557.	8.5	103
13	Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection. PLoS Biology, 2004, 2, e20.	5.6	399
14	Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Medicine, 2002, 8, 379-385.	30.7	1,432