Jiayan Cong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1477629/publications.pdf

Version: 2024-02-01

394421 677142 1,235 22 19 22 citations g-index h-index papers 24 24 24 1626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chemical Communications, 2009, , 6288.	4.1	156
2	lodine/iodide-free redox shuttles for liquid electrolyte-based dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9180.	30.8	146
3	Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes and Pigments, 2010, 84, 62-68.	3.7	132
4	Efficient near infrared D–π–A sensitizers with lateral anchoring group for dye-sensitized solar cells. Chemical Communications, 2009, , 4031.	4.1	112
5	Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 497-503.	17.4	77
6	Novel Blue Organic Dye for Dye-Sensitized Solar Cells Achieving High Efficiency in Cobalt-Based Electrolytes and by Co-Sensitization. ACS Applied Materials & Electrolytes and by Co-Sensitization.	8.0	67
7	Nitro group as a new anchoring group for organic dyes in dye-sensitized solar cells. Chemical Communications, 2012, 48, 6663.	4.1	65
8	Bis(1,1-bis(2-pyridyl)ethane)copper(<scp>i</scp> / <scp>ii</scp>) as an efficient redox couple for liquid dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 14550-14554.	10.3	63
9	Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells. Royal Society Open Science, 2019, 6, 190723.	2.4	53
10	Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine) ₂] ^{2+/1+} redox shuttle. RSC Advances, 2017 7, 4611-4615.	⁷ , 3.6	48
11	Engineering of highly efficient tetrahydroquinoline sensitizers for dye-sensitized solar cells. Tetrahedron, 2012, 68, 552-558.	1.9	42
12	A highly efficient colourless sulfur/iodide-based hybrid electrolyte for dye-sensitized solar cells. RSC Advances, 2012, 2, 3625.	3.6	39
13	Molecular Engineering of D–Dâ^π–A-Based Organic Sensitizers for Enhanced Dye-Sensitized Solar Cell Performance. ACS Omega, 2018, 3, 3819-3829.	3.5	32
14	Ferrocene as a rapid charge regenerator in dye-sensitized solar cells. Dyes and Pigments, 2016, 132, 360-368.	3.7	31
15	Molecular Design to Improve the Performance of Donor–π Acceptor Nearâ€IR Organic Dyeâ€Sensitized Solar Cells. ChemSusChem, 2011, 4, 1601-1605.	6.8	30
16	Electrolytes Based on TEMPO–Co Tandem Redox Systems Outperform Single Redox Systems in Dyeâ€sensitized Solar Cells. ChemSusChem, 2015, 8, 264-268.	6.8	29
17	Solvent-free ionic liquid electrolytes without elemental iodine for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11592.	2.8	28
18	Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System. ACS Energy Letters, 2018, 3, 1929-1937.	17.4	22

#	Article	IF	CITATION
19	Comparison between Benzothiadizole–Thiophene- and Benzothiadizole–Furan-Based D–Aâ^π–A Dyes Applied in Dye-Sensitized Solar Cells: Experimental and Theoretical Insights. ACS Omega, 2020, 5, 16856-16864.	3.5	21
20	Two Redox Couples are Better Than One: Improved Current and Fill Factor from Cobaltâ€Based Electrolytes in Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301273.	19.5	17
21	Triphenylamine Groups Improve Blocking Behavior of Phenoxazine Dyes in Cobaltâ€Electrolyteâ€Based Dyeâ€Sensitized Solar Cells. ChemPhysChem, 2014, 15, 3476-3483.	2.1	17
22	Photo-induced electron transfer study of D-Ï€-A sensitizers with different type of anchoring groups for dye-sensitized solar cells. RSC Advances, 2012, 2, 6011.	3.6	8