Daniel R Bond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1477416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Applied and Environmental Microbiology, 2003, 69, 1548-1555.	1.4	1,966
2	<i>Shewanella</i> secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3968-3973.	3.3	1,629
3	Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science, 2002, 295, 483-485.	6.0	1,234
4	Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 2004, 6, 596-604.	1.8	659
5	Harnessing microbially generated power on the seafloor. Nature Biotechnology, 2002, 20, 821-825.	9.4	640
6	Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms. Applied and Environmental Microbiology, 2008, 74, 7329-7337.	1.4	462
7	Microbial Communities Associated with Electrodes Harvesting Electricity from a Variety of Aquatic Sediments. Microbial Ecology, 2004, 48, 178-190.	1.4	440
8	The Mtr Respiratory Pathway Is Essential for Reducing Flavins and Electrodes in <i>Shewanella oneidensis</i> . Journal of Bacteriology, 2010, 192, 467-474.	1.0	410
9	Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes. Applied and Environmental Microbiology, 2004, 70, 1234-1237.	1.4	334
10	Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism. PLoS ONE, 2011, 6, e16649.	1.1	308
11	Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling. Applied and Environmental Microbiology, 2006, 72, 1558-1568.	1.4	290
12	Evidence for Involvement of an Electron Shuttle in Electricity Generation by Geothrix fermentans. Applied and Environmental Microbiology, 2005, 71, 2186-2189.	1.4	278
13	Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry, 2009, 284, 28865-28873.	1.6	246
14	Voltammetry and Growth Physiology of <i>Geobacter sulfurreducens</i> Biofilms as a Function of Growth Stage and Imposed Electrode Potential. Electroanalysis, 2010, 22, 865-874.	1.5	229
15	Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environmental Microbiology, 2002, 4, 115-124.	1.8	220
16	Identification of an Extracellular Polysaccharide Network Essential for Cytochrome Anchoring and Biofilm Formation in <i>Geobacter sulfurreducens</i> . Journal of Bacteriology, 2011, 193, 1023-1033.	1.0	208
17	Electrochemical characterization of <i>Geobacter sulfurreducens</i> cells immobilized on graphite paper electrodes. Biotechnology and Bioengineering, 2008, 99, 1065-1073.	1.7	205
18	Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell. Applied and Environmental Microbiology, 2004, 70, 6023-6030.	1.4	190

DANIEL R BOND

#	Article	IF	CITATIONS
19	On Electron Transport through <i>Geobacter</i> Biofilms. ChemSusChem, 2012, 5, 1099-1105.	3.6	184
20	A transâ€outer membrane porinâ€cytochrome protein complex for extracellular electron transfer by <scp><i>G</i></scp> <i>eobacter sulfurreducens</i> â€ <scp>PCA</scp> . Environmental Microbiology Reports, 2014, 6, 776-785.	1.0	178
21	Linking Spectral and Electrochemical Analysis to Monitor <i>câ€</i> type Cytochrome Redox Status in Living <i>Geobacter sulfurreducens</i> Biofilms. ChemPhysChem, 2011, 12, 2235-2241.	1.0	167
22	Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry, 2016, 107, 7-13.	2.4	166
23	Effect of Linoleic Acid Concentration on Conjugated Linoleic Acid Production by Butyrivibrio fibrisolvens A38. Applied and Environmental Microbiology, 2000, 66, 5226-5230.	1.4	160
24	Redox potential as a master variable controlling pathways of metal reduction by <i>Geobacter sulfurreducens</i> . ISME Journal, 2017, 11, 741-752.	4.4	145
25	An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors. MBio, 2014, 5, e02034.	1.8	141
26	Enabling Unbalanced Fermentations by Using Engineered Electrode-Interfaced Bacteria. MBio, 2010, 1, .	1.8	140
27	Longâ€Distance Electron Transfer by <i>C. sulfurreducens</i> Biofilms Results in Accumulation of Reduced <i>c</i> â€Type Cytochromes. ChemSusChem, 2012, 5, 1047-1053.	3.6	112
28	Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Archives of Microbiology, 1999, 171, 324-330.	1.0	108
29	Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes. MBio, 2013, 4, e00420-12.	1.8	104
30	Painting and Printing Living Bacteria: Engineering Nanoporous Biocatalytic Coatings to Preserve Microbial Viability and Intensify Reactivity. Biotechnology Progress, 2007, 23, 2-17.	1.3	95
31	NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proceedings of the United States of America, 2019, 116, 20716-20724.	3.3	83
32	Genetic Characterization of a Single Bifunctional Enzyme for Fumarate Reduction and Succinate Oxidation in Geobacter sulfurreducens and Engineering of Fumarate Reduction in Geobacter metallireducens. Journal of Bacteriology, 2006, 188, 450-455.	1.0	77
33	Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials. Applied and Environmental Microbiology, 2012, 78, 6987-6995.	1.4	76
34	Enhancement of Survival and Electricity Production in an Engineered Bacterium by Light-Driven Proton Pumping. Applied and Environmental Microbiology, 2010, 76, 4123-4129.	1.4	73
35	Gold line array electrodes increase substrate affinity and current density of electricity-producing G. sulfurreducens biofilms. Energy and Environmental Science, 2010, 3, 1782.	15.6	71
36	Identification of Different Putative Outer Membrane Electron Conduits Necessary for Fe(III) Citrate, Fe(III) Oxide, Mn(IV) Oxide, or Electrode Reduction by Geobacter sulfurreducens. Journal of Bacteriology, 2018, 200, .	1.0	69

DANIEL R BOND

#	Article	IF	CITATIONS
37	Identification of Genes Involved in Biofilm Formation and Respiration via Mini- <i>Himar</i> Transposon Mutagenesis of <i>Geobacter sulfurreducens</i> . Journal of Bacteriology, 2009, 191, 4207-4217.	1.0	58
38	Isolation and Genomic Characterization of â€~Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine. Frontiers in Microbiology, 2016, 7, 913.	1.5	53
39	Characterization of Citrate Synthase from Geobacter sulfurreducens and Evidence for a Family of Citrate Synthases Similar to Those of Eukaryotes throughout the Geobacteraceae. Applied and Environmental Microbiology, 2005, 71, 3858-3865.	1.4	52
40	Scarless Genome Editing and Stable Inducible Expression Vectors for Geobacter sulfurreducens. Applied and Environmental Microbiology, 2015, 81, 7178-7186.	1.4	52
41	Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nature Microbiology, 2022, 7, 1291-1300.	5.9	47
42	Geobacter sulfurreducens Extracellular Multiheme Cytochrome PgcA Facilitates Respiration to Fe(III) Oxides But Not Electrodes. Frontiers in Microbiology, 2017, 8, 2481.	1.5	43
43	Electrochemical Analysis of <i>Shewanella oneidensis</i> Engineered To Bind Gold Electrodes. ACS Synthetic Biology, 2013, 2, 93-101.	1.9	39
44	Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides. Journal of Bacteriology, 2017, 199, .	1.0	39
45	Abundance of the Multiheme c-Type Cytochrome OmcB Increases in Outer Biofilm Layers of Electrode-Grown Geobacter sulfurreducens. PLoS ONE, 2014, 9, e104336.	1.1	28
46	A Role for Fructose 1,6-Diphosphate in the ATPase-Mediated Energy-Spilling Reaction of Streptococcus bovis. Applied and Environmental Microbiology, 1996, 62, 2095-2099.	1.4	27
47	Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. ELife, 2019, 8, .	2.8	27
48	Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
49	<i>Geobacter sulfurreducens</i> inner membrane cytochrome CbcBA controls electron transfer and growth yield near the energetic limit of respiration. Molecular Microbiology, 2021, 116, 1124-1139.	1.2	24
50	The diversion of lactose carbon through the tagatose pathway reduces the intracellular fructose 1,6-bisphosphate and growth rate of Streptococcus bovis. Applied Microbiology and Biotechnology, 1998, 49, 600-605.	1.7	23
51	Roles of membrane structure and phase transition on the hyperosmotic stress survival of Geobacter sulfurreducens. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2283-2290.	1.4	23
52	A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens. Applied and Environmental Microbiology, 2020, 86, .	1.4	21
53	Relationship between Intracellular Phosphate, Proton Motive Force, and Rate of Nongrowth Energy Dissipation (Energy Spilling) in <i>Streptococcus bovis</i> JB1. Applied and Environmental Microbiology, 1998, 64, 976-981.	1.4	21
54	Mapping the Iron Binding Site(s) on the Small Tetraheme Cytochrome of <i>Shewanella oneidensis</i> MR-1. Biochemistry, 2011, 50, 6217-6224.	1.2	19

DANIEL R BOND

0

#	Article	IF	CITATIONS
55	Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion. Microbiology (United Kingdom), 2000, 146, 687-694.	0.7	17
56	The fructose diphosphate/phosphate regulation of carbohydrate metabolism in low G+C Gram-positive anaerobes. Research in Microbiology, 1996, 147, 528-535.	1.0	16
57	Electrodes as Electron Acceptors, and the Bacteria Who Love Them. , 2010, , 385-399.		15
58	Preventing Hydrogen Disposal Increases Electrode Utilization Efficiency by Shewanella oneidensis. Frontiers in Energy Research, 2019, 7, .	1.2	14
59	Electrolocation? The evidence for redoxâ€mediated taxis in Shewanella oneidensis. Molecular Microbiology, 2020, 115, 1069-1079.	1.2	13
60	Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Applied and Environmental Microbiology, 2021, 87, e0070621.	1.4	13
61	Draft Genome Sequence of the Gram-Positive Thermophilic Iron Reducer Thermincola ferriacetica Strain Z-0001 ^T . Genome Announcements, 2015, 3, .	0.8	12
62	Novel Microbial Groups Drive Productivity in an Archean Iron Formation. Frontiers in Microbiology, 2021, 12, 627595.	1.5	12
63	Physiological characterization of Streptococcus bovis mutants that can resist 2-deoxyglucose-induced lysis. Microbiology (United Kingdom), 1999, 145, 2977-2985.	0.7	11
64	Survival of the first rather than the fittest in a Shewanella electrode biofilm. Communications Biology, 2021, 4, 536.	2.0	10
65	Energetic and Molecular Constraints on the Mechanism of Environmental Fe(III) Reduction by Geobacter. , 2013, , 29-48.		8
66	Potential Role of a Novel Psychrotolerant Member of the Family <i>Geobacteraceae, Geopsychrobacter electrodiphilus</i> gen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell. Applied and Environmental Microbiology, 2009, 75, 885-885.	1.4	6
67	Genomes of Geoalkalibacter ferrihydriticus Z-0531 ^T and Geoalkalibacter subterraneus Red1 ^T , Two Haloalkaliphilic Metal-Reducing Deltaproteobacteria. Genome Announcements, 2015, 3, .	0.8	6
68	Engineering Nanoporous Bioactive Smart Coatings Containing Microorganisms: Fundamentals and Emerging Applications. ACS Symposium Series, 2009, , 52-94.	0.5	3
69	Complete Genome of Geobacter pickeringii G13 ^T , a Metal-Reducing Isolate from Sedimentary Kaolin Deposits. Genome Announcements, 2015, 3, .	0.8	3
70	The Signaling Pathway That cGAMP Riboswitches Found: Analysis and Application of Riboswitches to Study cGAMP Signaling in Geobacter sulfurreducens. International Journal of Molecular Sciences, 2022, 23, 1183.	1.8	2
71	Coating of fuel cells using carbohydrate solutions. , 2006, , .		0

72 Desiccation of Geobacter Sulfurreducens: Membrane Response to Osmotic Stress. , 2008, , .

5