Ana Paula Marreilha dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1477304/publications.pdf

Version: 2024-02-01

29 papers 843 citations

471061 17 h-index 26 g-index

32 all docs 32 docs citations

times ranked

32

1299 citing authors

#	Article	IF	Citations
1	Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 2008, 1203, 1-11.	1.1	118
2	The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology, 2012, 292, 90-98.	2.0	93
3	Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biological Trace Element Research, 2015, 166, 13-23.	1.9	62
4	Manganese in human parenteral nutrition: Considerations for toxicity and biomonitoring. NeuroToxicology, 2014, 43, 36-45.	1.4	61
5	Antioxidants prevent the cytotoxicity of manganese in RBE4 cells. Brain Research, 2008, 1236, 200-205.	1.1	41
6	Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicology and Applied Pharmacology, 2012, 258, 394-402.	1.3	41
7	Prolactin is a peripheral marker of manganese neurotoxicity. Brain Research, 2011, 1382, 282-290.	1.1	39
8	Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. Toxicology Letters, 2007, 169, 121-128.	0.4	37
9	Urinary delta-ALA: A potential biomarker of exposure and neurotoxic effect in rats co-treated with a mixture of lead, arsenic and manganese. NeuroToxicology, 2013, 38, 33-41.	1.4	36
10	Determination of trace metals in fruit juices in the Portuguese market. Toxicology Reports, 2018, 5, 434-439.	1.6	36
11	Putative proteins involved in manganese transport across the blood-brain barr 1ier. Human and Experimental Toxicology, 2007, 26, 295-302.	1.1	35
12	Cyclization-activated prodrugs. Synthesis, reactivity and toxicity of dipeptide esters of paracetamol. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1595-1598.	1.0	32
13	Rat brain endothelial cells are a target of manganese toxicity. Brain Research, 2010, 1326, 152-161.	1.1	27
14	Manganese Alters Rat Brain Amino Acids Levels. Biological Trace Element Research, 2012, 150, 337-341.	1.9	24
15	High-Fish Consumption and Risk Prevention: Assessment of Exposure to Methylmercury in Portugal. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1279-1288.	1.1	22
16	Blood-Brain Barrier and Cell-Cell Interactions: Methods for Establishing In Vitro Models of the Blood-Brain Barrier and Transport Measurements. , 2006, 341, 1-16.		19
17	Biomarkers of exposure and effect in a working population exposed to lead, manganese and arsenic. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 983-997.	1.1	18
18	Evaluation of neurobehavioral and neuroinflammatory end-points in the post-exposure period in rats sub-acutely exposed to manganese. Toxicology, 2013, 314, 95-99.	2.0	17

#	Article	IF	CITATIONS
19	Neurotoxicity of metal mixtures. Advances in Neurotoxicology, 2021, 5, 329-364.	0.7	17
20	Changes in rat urinary porphyrin profiles predict the magnitude of the neurotoxic effects induced by a mixture of lead, arsenic and manganese. NeuroToxicology, 2014, 45, 168-177.	1.4	16
21	Arsenic and Manganese Alter Lead Deposition in the Rat. Biological Trace Element Research, 2014, 158, 384-391.	1.9	15
22	Comparison Between 5-Aminosalicylic Acid (5-ASA) and Para-Aminosalicylic Acid (4-PAS) as Potential Protectors Against Mn-Induced Neurotoxicity. Biological Trace Element Research, 2013, 152, 113-116.	1.9	9
23	Alternative biomarkers of n-hexane exposure: Characterization of aminoderived pyrroles and thiol-pyrrole conjugates in urine of rats exposed to 2,5-hexanedione. Toxicology Letters, 2014, 224, 54-63.	0.4	9
24	Role of N-acetylcysteine in protecting against 2,5-hexanedione neurotoxicity in a rat model: Changes in urinary pyrroles levels and motor activity performance. Environmental Toxicology and Pharmacology, 2014, 38, 807-813.	2.0	6
25	Metal environmental contamination within different human exposure context- specific and non-specific biomarkers. Toxicology Letters, 2020, 324, 46-53.	0.4	6
26	Interaction of zinc on biomarker responses in rats exposed to 2,5-hexanedione by two routes of exposure. Toxicology Letters, 2001, 119, 39-47.	0.4	5
27	Effect of manganese on acetylcholinesterase activity. Toxicology, 2012, 298, 61-62.	2.0	1
28	Manganese and Neurodegeneration., 2017,, 117-151.		1
29	Manganese Transport into the Brain: Putative Mechanisms. Me, 2008, 10, 695-700.	1.0	O