
Martin Täubel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476639/publications.pdf Version: 2024-02-01

ΜΑΡΤΙΝ ΤΑ̈́ΒΕΙ

#	Article	IF	CITATIONS
1	Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nature Medicine, 2019, 25, 1089-1095.	30.7	219
2	Microbiologicals for deactivating mycotoxins. Molecular Nutrition and Food Research, 2006, 50, 543-551.	3.3	197
3	The occupant as a source of house dust bacteria. Journal of Allergy and Clinical Immunology, 2009, 124, 834-840.e47.	2.9	180
4	Indoor fungi: companions and contaminants. Indoor Air, 2015, 25, 125-156.	4.3	174
5	Lactobacillus rhamnosus Strain GG Modulates Intestinal Absorption, Fecal Excretion, and Toxicity of Aflatoxin B1 in Rats. Applied and Environmental Microbiology, 2006, 72, 7398-7400.	3.1	99
6	Indoor air pollution, physical and comfort parameters related to schoolchildren's health: Data from the European SINPHONIE study. Science of the Total Environment, 2020, 739, 139870.	8.0	94
7	Microbial Communities Associated with House Dust. Advances in Applied Microbiology, 2012, 78, 75-120.	2.4	86
8	Evolution of the indoor biome. Trends in Ecology and Evolution, 2015, 30, 223-232.	8.7	75
9	Quantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1092-1101.	5.7	65
10	Occurrence of moisture problems in schools in three countries from different climatic regions of Europe based on questionnaires and building inspections - the HITEA study. Indoor Air, 2012, 22, 457-466.	4.3	62
11	Co-occurrence of toxic bacterial and fungal secondary metabolites in moisture-damaged indoor environments. Indoor Air, 2011, 21, 368-375.	4.3	59
12	Dampness and mould in schools and respiratory symptoms in children: the HITEA study. Occupational and Environmental Medicine, 2013, 70, 681-687.	2.8	58
13	Infant and Adult Inhalation Exposure to Resuspended Biological Particulate Matter. Environmental Science & Technology, 2018, 52, 237-247.	10.0	57
14	Passive dust collectors for assessing airborne microbial material. Microbiome, 2015, 3, 46.	11.1	55
15	Quantitative assessment of microbes from samples of indoor air and dust. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 231-241.	3.9	55
16	Bacillus barbaricus sp. nov., isolated from an experimental wall painting. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 725-730.	1.7	51
17	Dampness, bacterial and fungal components in dust in primary schools and respiratory health in schoolchildren across Europe. Occupational and Environmental Medicine, 2014, 71, 704-712.	2.8	51
18	Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner. Indoor Air, 2018, 28, 6-15.	4.3	51

Martin Täbel

#	Article	IF	CITATIONS
19	Indoor bacterial microbiota and development of asthma by 10.5Âyears of age. Journal of Allergy and Clinical Immunology, 2019, 144, 1402-1410.	2.9	50
20	Staphylococcus nepalensis sp. nov., isolated from goats of the Himalayan region. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 2007-2011.	1.7	48
21	Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. Journal of Environmental Monitoring, 2012, 14, 2044.	2.1	48
22	Winter Ventilation Rates at Primary Schools: Comparison Between Portugal and Finland. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2013, 76, 400-408.	2.3	47
23	Bacterial Exposures and Associations with Atopy and Asthma in Children. PLoS ONE, 2015, 10, e0131594.	2.5	41
24	Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome, 2017, 5, 138.	11.1	40
25	Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome, 2018, 6, 25.	11.1	40
26	Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe. Indoor Air, 2012, 22, 24-32.	4.3	38
27	Endotoxin levels in settled airborne dust in European schools: the HITEA school study. Indoor Air, 2014, 24, 148-157.	4.3	35
28	Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings. Indoor Air, 2017, 27, 13-23.	4.3	35
29	Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor Air, 2016, 26, 448-456.	4.3	31
30	Predictors of microbial agents in dust and respiratory health in the Ecrhs. BMC Pulmonary Medicine, 2015, 15, 48.	2.0	29
31	Effects of energy retrofits on Indoor Air Quality in multifamily buildings. Indoor Air, 2019, 29, 686-697.	4.3	28
32	Active eukaryotes in drinking water distribution systems of ground and surface waterworks. Microbiome, 2019, 7, 99.	11.1	25
33	Application of the Environmental Relative Moldiness Index in Finland. Applied and Environmental Microbiology, 2016, 82, 578-584.	3.1	24
34	Evaluation of settled floor dust for the presence of microbial metabolites and volatile anthropogenic chemicals in indoor environments by LC–MS/MS and GC–MS methods. Talanta, 2011, 85, 2027-2038.	5.5	22
35	Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor Air, 2014, 24, 248-259.	4.3	22
36	Domestic use of bleach and infections in children: a multicentre cross-sectional study. Occupational and Environmental Medicine, 2015, 72, 602-604.	2.8	22

Martin Täbel

#	Article	IF	CITATIONS
37	Inflammatory potential in relation to the microbial content of settled dust samples collected from moisture-damaged and reference schools: results of HITEA study. Indoor Air, 2016, 26, 380-390.	4.3	22
38	Pediatric Asthma and the Indoor Microbial Environment. Current Environmental Health Reports, 2016, 3, 238-249.	6.7	22
39	Indoor bacteria and asthma in adults: a multicentre case–control study within ECRHS II. European Respiratory Journal, 2018, 51, 1701241.	6.7	21
40	Integrating farm and air pollution studies in search for immunoregulatory mechanisms operating in protective and highâ€risk environments. Pediatric Allergy and Immunology, 2018, 29, 815-822.	2.6	21
41	Microbial diversity in homes and the risk of allergic rhinitis and inhalant atopy in two European birth cohorts. Environmental Research, 2021, 196, 110835.	7.5	19
42	Floor dust bacteria and fungi and their coexistence with PAHs in Jordanian indoor environments. Science of the Total Environment, 2017, 601-602, 940-945.	8.0	18
43	Residential green space can shape the indoor microbial environment. Environmental Research, 2021, 201, 111543.	7.5	18
44	Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. Indoor Air, 2018, 28, 16-27.	4.3	16
45	Microbial growth in building material samples and occupants' health in severely moisture-damaged homes. Indoor Air, 2018, 28, 287-297.	4.3	16
46	Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. Science of the Total Environment, 2022, 821, 153422.	8.0	16
47	Particle Resuspension Dynamics in the Infant Near-Floor Microenvironment. Environmental Science & Technology, 2021, 55, 1864-1875.	10.0	14
48	Indoor air quality in London schools. Part 2: long-term integrated assessment. Intelligent Buildings International, 2015, 7, 130-146.	2.3	13
49	Objective assessment of domestic mold contamination using quantitative PCR. Journal of Allergy and Clinical Immunology, 2016, 137, 622-624.	2.9	13
50	Microbial exposures in moistureâ€damaged schools and associations with respiratory symptoms in students: A multi ountry environmental exposure study. Indoor Air, 2021, 31, 1952-1966.	4.3	13
51	Comparison of methods for assessing temporal variation of growth of fungi on building materials. Microbiology (United Kingdom), 2016, 162, 1895-1903.	1.8	13
52	An emerging paradox: Toward a better understanding of the potential benefits and adversity of microbe exposures in the indoor environment. Indoor Air, 2017, 27, 3-5.	4.3	12
53	Early life home microbiome and hyperactivity/inattention in school-age children. Scientific Reports, 2019, 9, 17355.	3.3	12
54	Early life exposures to home dampness, pet ownership and farm animal contact and neuropsychological development in 4 year old children: A prospective birth cohort study. International Journal of Hygiene and Environmental Health, 2013, 216, 690-697.	4.3	10

Martin TÃ**ü**bel

#	Article	IF	CITATIONS
55	School attendance and daily respiratory symptoms in children: influence of moisture damage. Indoor Air, 2017, 27, 303-310.	4.3	10
56	Human airway construct model is suitable for studying transcriptome changes associated with indoor air particulate matter toxicity. Indoor Air, 2020, 30, 433-444.	4.3	10
57	Associations between dog keeping and indoor dust microbiota. Scientific Reports, 2021, 11, 5341.	3.3	10
58	Determinants, reproducibility, and seasonal variation of bacterial cell wall components and viable counts in house dust. Indoor Air, 2015, 25, 260-272.	4.3	8
59	Indoor green can modify the indoor dust microbial communities. Indoor Air, 2022, 32, e13011.	4.3	7
60	Occurrence of Mycotoxins in Indoor Environments. , 2016, , 299-323.		6
61	Evaluation of sampling methods for toxicological testing of indoor air particulate matter. Inhalation Toxicology, 2016, 28, 500-507.	1.6	6
62	Oxidative capacity and hemolytic activity of settled dust from moistureâ€damaged schools. Indoor Air, 2019, 29, 299-307.	4.3	6
63	Toxicological transcriptome of human airway constructs after exposure to indoor air particulate matter: In search of relevant pathways of moisture damage-associated health effects. Environment International, 2022, 158, 106997.	10.0	6
64	The effect of assay type and sample matrix on detected cytokine concentrations in human blood serum and nasal lavage fluid. Journal of Pharmaceutical and Biomedical Analysis, 2014, 96, 151-155.	2.8	5
65	Microbial Exposures in Schools and Daycare Centers. , 2017, , 253-287.		5
66	Toxicity of airborne dust as an indicator of moisture problems in school buildings. Inhalation Toxicology, 2017, 29, 75-81.	1.6	3
67	Toxicological and microbiological characterization of cow stable dust. Toxicology in Vitro, 2021, 75, 105202.	2.4	3
68	Analysis Approaches for Fungi in Indoor Environmental Assessments. , 2017, , 109-127.		2
69	Nasal mucosa and blood cell transcriptome profiles do not reflect respiratory symptoms associated with moisture damage. Indoor Air, 2018, 28, 721-731.	4.3	2
70	The environmental microbiota and asthma. , 2019, , 216-239.		2
71	Determination of fumonisins and hydrolyzed fumonisin B1 in microbial culture media by LC/ESI-MS. Mycotoxin Research, 2003, 19, 198-202.	2.3	1
72	Practitioner-driven research for improving the outcomes of mold inspection and remediation. Science of the Total Environment, 2021, 762, 144190.	8.0	1

Martin Täbel

#	Article	IF	CITATIONS
73	Breast-milk microbes and risk of asthma by 6 years of age. , 2018, , .		1
74	Microbiota as in farm homes protect children from asthma. , 2018, , .		1
75	Lactobacillus rhamnosus strain GG modulates toxicity and kinetics of orally administered AFB1 in rats. Toxicology Letters, 2006, 164, S153.	0.8	0
76	Author response to Dr Wise's letter. Occupational and Environmental Medicine, 2016, 73, 215.2-216.	2.8	0
77	Reply. Journal of Allergy and Clinical Immunology, 2020, 145, 1307-1308.	2.9	0
78	Toxicological responses of normal human bronchial epithelium (NHBE) model exposed to settled dust samples from moisture damaged and reference schools. , 2015, , .		0
79	Birth cohort studies on farm-like indoor microbiota and asthma: the importance of composition and taxonomic resolution. , 2017, , .		0
80	Comparison of sampling methods of indoor air particulate matter for in vitro exposure studies. , 2017, , .		0
81	Indoor microbial diversity and risk of different wheezing phenotypes. , 2018, , .		0
82	Early life home indoor bacterial and fungal microbiota measured with amplicon sequencing and risk of asthma by the age of 10.5 years. , 2018, , .		0
83	Activation of toxicology-related genes in human airway constructs after exposure to indoor air particulate matter from moisture-damaged houses. , 2020, , .		О