
Andrew Aplin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methane Adsorption on Shale under Simulated Geological Temperature and Pressure Conditions. Energy & Fuels, 2013, 27, 3099-3109.	5.1	399
2	Seal bypass systems. AAPG Bulletin, 2007, 91, 1141-1166.	1.5	352
3	Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 2011, 95, 2031-2059.	1.5	345
4	High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens. Energy & Fuels, 2014, 28, 2886-2901.	5.1	340
5	A permeability–porosity relationship for mudstones. Marine and Petroleum Geology, 2010, 27, 1692-1697.	3.3	236
6	Permeability and petrophysical properties of 30 natural mudstones. Journal of Geophysical Research, 2007, 112, .	3.3	221
7	Changes in Type II Kerogen Density as a Function of Maturity:  Evidence from the Kimmeridge Clay Formation. Energy & Fuels, 2005, 19, 2495-2499.	5.1	210
8	Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones. Clays and Clay Minerals, 2006, 54, 500-514.	1.3	196
9	Compaction-driven evolution of porosity and permeability in natural mudstones: An experimental study. Journal of Geophysical Research, 1998, 103, 651-661.	3.3	195
10	Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin. Marine and Petroleum Geology, 1998, 15, 163-175.	3.3	154
11	First international inter-laboratory comparison of high-pressure CH 4 , CO 2 and C 2 H 6 sorption isotherms on carbonaceous shales. International Journal of Coal Geology, 2014, 132, 131-146.	5.0	132
12	Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin. Geochimica Et Cosmochimica Acta, 1991, 55, 3581-3595.	3.9	129
13	Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochimica Et Cosmochimica Acta, 1985, 49, 427-436.	3.9	124
14	Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. Journal of Geophysical Research, 1999, 104, 29261-29274.	3.3	114
15	Definition and practical application of mudstone porosity–effective stress relationships. Petroleum Geoscience, 2004, 10, 153-162.	1.5	111
16	Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO ₂ storage project at the Krechba Field, Algeria. Journal of Geophysical Research, 2011, 116, .	3.3	105
17	Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale. Marine and Petroleum Geology, 2016, 75, 117-139.	3.3	104
18	Reservoir geochemistry: methods, applications and opportunities. Geological Society Special Publication, 1995, 86, 5-32.	1.3	98

ANDREW APLIN

#	Article	IF	CITATIONS
19	Assessment of β the compression coefficient of mudstones and its relationship with detailed lithology. Marine and Petroleum Geology, 1995, 12, 955-963.	3.3	97
20	Ferromanganese oxide deposits from the Central Pacific Ocean, II. Nodules and associated sediments. Geochimica Et Cosmochimica Acta, 1985, 49, 437-451.	3.9	92
21	Permeability and fluid flow in natural mudstones. Geological Society Special Publication, 1999, 158, 23-43.	1.3	89
22	Open-system chemical behavior in deep Wilcox Group mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 2010, 27, 1804-1818.	3.3	88
23	Diagenetic Reorientation of Phyllosilicate Minerals in Paleogene Mudstones of the Podhale Basin, Southern Poland. Clays and Clay Minerals, 2008, 56, 100-111.	1.3	74
24	Fabric anisotropy induced by primary depositional variations in the silt: clay ratio in two fine-grained slope fan complexes: Texas Gulf Coast and northern North Sea. Sedimentary Geology, 2010, 226, 42-53.	2.1	55
25	Rare earth element geochemistry of Central Pacific ferromanganese encrustations. Earth and Planetary Science Letters, 1984, 71, 13-22.	4.4	54
26	Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand. Geological Society Special Publication, 2007, 292, 235-258.	1.3	50
27	The fabric of consolidation in Gulf of Mexico mudstones. Marine Geology, 2012, 295-298, 77-85.	2.1	47
28	Quartz Cementation History of Sandstones Revealed By High-Resolution Sims Oxygen Isotope Analysis. Journal of Sedimentary Research, 2013, 83, 522-530.	1.6	45
29	143Nd/144Nd in Pacific ferromanganese encrustations and nodules. Earth and Planetary Science Letters, 1986, 81, 7-14.	4.4	44
30	Mercia Mudstone Formation caprock to carbon capture and storage sites: petrology and petrophysical characteristics. Journal of the Geological Society, 2013, 170, 119-132.	2.1	44
31	Biodegradation, gas destruction and methane generation in deep subsurface petroleum reservoirs: an overview. Petroleum Geology Conference Proceedings, 2005, 6, 633-639.	0.7	43
32	Role of colloids and fine particles in the transport of metals in rivers draining carbonate and silicate terrains. Limnology and Oceanography, 2001, 46, 331-344.	3.1	41
33	Geomechanical characterisation of organic-rich calcareous shale using AFM and nanoindentation. Rock Mechanics and Rock Engineering, 2021, 54, 303-320.	5.4	40
34	Numerical Simulation of Fracking in Shale Rocks: Current State and Future Approaches. Archives of Computational Methods in Engineering, 2017, 24, 281-317.	10.2	35
35	Assessing the implications of tectonic compaction on pore pressure using a coupled geomechanical approach. Marine and Petroleum Geology, 2017, 79, 31-43.	3.3	35
36	The impact of carbonate texture on the quantification of total porosity by image analysis. Computers and Geosciences, 2015, 85, 112-125.	4.2	30

ANDREW APLIN

#	Article	IF	CITATIONS
37	Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. Marine and Petroleum Geology, 2016, 71, 198-210.	3.3	29
38	Single- and two-phase fluid flow properties of cataclastic fault rocks in porous sandstone. Marine and Petroleum Geology, 2012, 29, 129-142.	3.3	28
39	Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response. Computational Geosciences, 2016, 20, 1109-1122.	2.4	28
40	Quantitative assessment of mudstone lithology using geophysical wireline logs and artificial neural networks. Petroleum Geoscience, 2004, 10, 141-151.	1.5	26
41	FIB-SEM and TEM Investigations of an Organic-rich Shale Maturation Series from the Lower Toarcian Posidonia Shale, Germany <subtitle>Nanoscale Pore System and Fluid-rock Interactions</subtitle> . , 2013, , .		25
42	Hydromechanical Modeling of Stress, Pore Pressure, and Porosity Evolution in Foldâ€andâ€Thrust Belt Systems. Journal of Geophysical Research: Solid Earth, 2017, 122, 9383-9403.	3.4	24
43	Influence of mechanical compaction and chemical diagenesis on the microfabric and fluid flow properties of Gulf of Mexico mudstones. Journal of Geochemical Exploration, 2003, 78-79, 449-451.	3.2	23
44	Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Science of the Total Environment, 2010, 408, 4877-4885.	8.0	21
45	Influence of Clay, Calcareous Microfossils, and Organic Matter on the Nature and Diagenetic Evolution of Pore Systems in Mudstones. Journal of Geophysical Research: Solid Earth, 2019, 124, 149-174.	3.4	21
46	Supercritical methane adsorption and storage in pores in shales and isolated kerogens. SN Applied Sciences, 2020, 2, 1.	2.9	21
47	Oxygen isotopic indications of the mechanisms of silica transport and quartz cementation in deeply buried sandstones. Geology, 1994, 22, 847.	4.4	20
48	Stress and pore pressure histories in complex tectonic settings predicted with coupled geomechanical-fluid flow models. Marine and Petroleum Geology, 2016, 76, 464-477.	3.3	20
49	Vertical effective stress as a control on quartz cementation in sandstones. Marine and Petroleum Geology, 2018, 98, 640-652.	3.3	20
50	A method for the disaggregation of mudstones. Sedimentology, 1997, 44, 559-562.	3.1	19
51	A Diagenesis Model for Geomechanical Simulations: Formulation and Implications for Pore Pressure and Development of Geological Structures. Journal of Geophysical Research: Solid Earth, 2019, 124, 4452-4472.	3.4	17
52	Effect of Diagenesis on Geomechanical Properties of Organicâ€Rich Calcareous Shale: A Multiscale Investigation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021365.	3.4	16
53	Voltammetric methods for the speciation of dissolved iron and determination of Fe-containing nanoparticles in mine-water discharge. Analytical Methods, 2011, 3, 927.	2.7	14
54	Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate. Geology, 2000, 28, 1047.	4.4	13

#	Article	IF	CITATIONS
55	Sour gas and water chemistry of the Bridport Sands reservoir, Wytch Farm, UK. Geological Society Special Publication, 1995, 86, 303-314.	1.3	12
56	Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe–SO4 rich waters. Science of the Total Environment, 2012, 420, 238-249.	8.0	12
57	Oxygen Isotope Microanalysis By Secondary Ion Mass Spectrometry Suggests Continuous 300-million-year History of Calcite Cementation and Dolomitization in the Devonian Bakken Formation. Journal of Sedimentary Research, 2018, 88, 91-104.	1.6	12
58	A lamina-scale geochemical and sedimentological study of sediments from the Peru Margin (Site 680,) Tj ETQq0 () 0 rgBT /C 1.3	overlock 10 T
59	Fabric development and the smectite to illite transition in Upper Cretaceous mudstones from the North Sea: an image Analysis Approach. Geological Society Special Publication, 2005, 249, 103-114.	1.3	10
60	Mathematical models of the distribution of geotracers during oil migration and accumulation. Petroleum Geoscience, 2005, 11, 67-78.	1.5	9
61	Redox geochemistry in organic-rich sediments of a constructed wetland treating colliery spoil leachate. Applied Geochemistry, 2009, 24, 44-51.	3.0	9
62	Discussion in response to Knut BjĄ̃rlykke regarding JMPG_1376 "Open-System Chemical Behavior In Deep Wilcox Group Mudstones, Texas Gulf Coast, USA". Marine and Petroleum Geology, 2011, 28, 1383-1384.	3.3	9
63	Dynamic climate-driven controls on the deposition of the Kimmeridge Clay Formation in the Cleveland Basin, Yorkshire, UK. Climate of the Past, 2019, 15, 1581-1601.	3.4	9
64	Vertical effective stress and temperature as controls of quartz cementation in sandstones: Evidence from North Sea Fulmar and Gulf of Mexico Wilcox sandstones. Marine and Petroleum Geology, 2020, 115, 104289.	3.3	8
65	Some new developments for modelling the geological compaction of fine-grained sediments: introduction. Marine and Petroleum Geology, 1998, 15, 105-108.	3.3	7
66	Local to global controls on the deposition of organic-rich muds across the Late Jurassic Laurasian Seaway. Journal of the Geological Society, 2019, 176, 1143-1153.	2.1	7
67	Determination of stable carbon (l̃´13C) isotope systematics foralkylphenols and light aromatic hydrocarbons (BTEX) in petroleum formation waters and co-produced oils. Journal of Geochemical Exploration, 2003, 78-79, 465-467.	3.2	6
68	Late diagenesis of illite-smectite in the Podhale Basin, southern Poland: Chemistry, morphology, and preferred orientation. , 2017, 13, 2137-2153.		6
69	Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: New insights from electrochemical analysis. Journal of Environmental Monitoring, 2012, 14, 1174.	2.1	3
70	Sedimentation of the Kimmeridge Clay Formation in the Cleveland Basin (Yorkshire, UK). Minerals (Basel, Switzerland), 2020, 10, 977.	2.0	3
71	Microstructure and pore systems of shallow-buried fluvial mudstone caprocks in Zhanhua depression, east China inferred from SEM and MICP. Marine and Petroleum Geology, 2021, 132, 105189.	3.3	3

5

#	Article	IF	CITATIONS
73	Running INTERFERONce on immunotherapy. Pigment Cell and Melanoma Research, 2018, 31, 352-353.	3.3	ο
74	Assessment of the elastic response of shale using multiscale mechanical testing and homogenisation. E3S Web of Conferences, 2020, 205, 04013.	0.5	0