
## Jeong-Hee Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476200/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable<br>batteries incorporating tetragonalÂLi7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power<br>Sources, 2015, 274, 458-463. | 4.0 | 240       |
| 2  | Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance<br>Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3723-3732.                                                            | 4.0 | 177       |
| 3  | All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes. Journal of the Electrochemical Society, 2015, 162, A704-A710.                                                                                               | 1.3 | 158       |
| 4  | Microstructure Controlled Porous Silicon Particles as a High Capacity Lithium Storage Material via<br>Dual Step Pore Engineering. Advanced Functional Materials, 2018, 28, 1800855.                                                     | 7.8 | 106       |
| 5  | Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility. ACS Nano, 2018, 12, 2955-2967.                                                                                            | 7.3 | 103       |
| 6  | Free-Positioning Wireless Charging System for Small Electronic Devices Using a Bowl-Shaped<br>Transmitting Coil. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 791-800.                                               | 2.9 | 85        |
| 7  | Anodic WO <sub>3</sub> Mesosponge @ Carbon: A Novel Binder-less Electrode for Advanced Energy<br>Storage Devices. ACS Applied Materials & Interfaces, 2015, 7, 7635-7643.                                                               | 4.0 | 77        |
| 8  | Nitrate removal by electro-bioremediation technology in Korean soil. Journal of Hazardous Materials,<br>2009, 168, 1208-1216.                                                                                                           | 6.5 | 60        |
| 9  | A cooperative biphasic MoOx–MoPx promoter enables a fast-charging lithium-ion battery. Nature<br>Communications, 2021, 12, 39.                                                                                                          | 5.8 | 59        |
| 10 | Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A<br>pilot study. Chemical Engineering Journal, 2012, 198-199, 110-121.                                                                  | 6.6 | 52        |
| 11 | Sb2S3 embedded in amorphous P/C composite matrix as high-performance anode material for sodium ion batteries. Electrochimica Acta, 2016, 210, 588-595.                                                                                  | 2.6 | 52        |
| 12 | Cathodic performance of V2O5 nanowires and reduced graphene oxide composites for lithium ion batteries. Current Applied Physics, 2014, 14, 215-221.                                                                                     | 1.1 | 51        |
| 13 | New high-energy-density GeTe-based anodes for Li-ion batteries. Journal of Materials Chemistry A, 2019,<br>7, 3278-3288.                                                                                                                | 5.2 | 50        |
| 14 | Low temperature performance of graphite and LiNi0.6Co0.2Mn0.2O2 electrodes in Li-ion batteries.<br>Journal of Materials Science, 2014, 49, 7707-7714.                                                                                   | 1.7 | 45        |
| 15 | Pilot-scale study on in situ electrokinetic removal of nitrate from greenhouse soil. Separation and<br>Purification Technology, 2011, 79, 254-263.                                                                                      | 3.9 | 40        |
| 16 | Porous carbon-free SnSb anodes for high-performance Na-ion batteries. Journal of Power Sources, 2018, 386, 34-39.                                                                                                                       | 4.0 | 36        |
| 17 | Highly Reversible Na-Ion Reaction in Nanostructured Sb <sub>2</sub> Te <sub>3</sub> -C Composites as<br>Na-Ion Battery Anodes. Journal of the Electrochemical Society, 2017, 164, A2056-A2064.                                          | 1.3 | 34        |
| 18 | Comparative Electrochemical Analysis of Crystalline and Amorphous Anodized Iron Oxide Nanotube<br>Layers as Negative Electrode for LIB. ACS Applied Materials & Interfaces, 2014, 6, 11219-11224.                                       | 4.0 | 31        |

JEONG-HEE CHOI

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Removal characteristics of salts of greenhouse in field test by in situ electrokinetic process.<br>Electrochimica Acta, 2012, 86, 63-71.                                                                                                          | 2.6 | 30        |
| 20 | Effect of binder and composition ratio on electrochemical performance of silicon/graphite composite battery electrode. Materials Letters, 2014, 136, 254-257.                                                                                     | 1.3 | 28        |
| 21 | Molecular characterization and corrosion behavior of thermophilic (55 °C) SRB<br><i>Desulfotomaculum kuznetsovii</i> isolated from cooling tower in petroleum refinery. Materials<br>and Corrosion - Werkstoffe Und Korrosion, 2009, 60, 730-737. | 0.8 | 22        |
| 22 | Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.<br>ChemSusChem, 2016, 9, 834-840.                                                                                                                      | 3.6 | 22        |
| 23 | Germanium telluride: Layered high-performance anode for sodium-ion batteries. Electrochimica Acta, 2020, 331, 135393.                                                                                                                             | 2.6 | 22        |
| 24 | Modulating the electrical conductivity of a graphene oxide-coated 3D framework for guiding bottom-up lithium growth. Journal of Materials Chemistry A, 2021, 9, 1822-1834.                                                                        | 5.2 | 22        |
| 25 | One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.                                                                                                                          | 7.3 | 22        |
| 26 | High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Metals and Materials International, 2017, 23, 1241-1249.                                                                | 1.8 | 21        |
| 27 | ZnSb/C composite anode in additive free electrolyte for sodium ion batteries. Materials Letters, 2015, 159, 349-352.                                                                                                                              | 1.3 | 19        |
| 28 | Cycle life modeling and the capacity fading mechanisms in a graphite/LiNi0.6Co0.2Mn0.2O2 cell. Journal of Applied Electrochemistry, 2015, 45, 419-426.                                                                                            | 1.5 | 18        |
| 29 | Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 60, 451-457.                                                 | 2.9 | 18        |
| 30 | 3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal<br>Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55227-55234.                                                                                | 4.0 | 17        |
| 31 | Porosity controlled carbon-based 3D anode for lithium metal batteries by a slurry based process.<br>Chemical Communications, 2020, 56, 13040-13043.                                                                                               | 2.2 | 16        |
| 32 | Crystalline iron oxide nanotube arrays with high aspect ratio as binder free anode for Li-ion batteries.<br>Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1889-1894.                                                   | 0.8 | 15        |
| 33 | Low temperature synthesis of garnet type solid electrolyte by modified polymer complex process and its characterization. Materials Research Bulletin, 2016, 83, 309-315.                                                                          | 2.7 | 15        |
| 34 | Effect of Electrode Materials on Electrokinetic Reduction of Soil Salinity. Separation Science and Technology, 2012, 47, 22-29.                                                                                                                   | 1.3 | 14        |
| 35 | In Situ Electrokinetic Removal of Salts from Greenhouse Soil Using Iron Electrode. Separation Science and Technology, 2013, 48, 749-756.                                                                                                          | 1.3 | 14        |
| 36 | Effect of carbon properties on the electrochemical performance of carbon-based air electrodes for rechargeable zinc–air batteries. Journal of Applied Electrochemistry, 2018, 48, 405-413.                                                        | 1.5 | 14        |

JEONG-HEE CHOI

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes. Journal of Applied Electrochemistry, 2019, 49, 207-216.              | 1.5 | 14        |
| 38 | Improved performance of Ag-nanoparticle-decorated TiO2 nanotube arrays in Li-ion batteries. Journal of the Korean Physical Society, 2013, 63, 1809-1814.                                        | 0.3 | 13        |
| 39 | Microstructural Tuning of Si/TiFeSi2 Nanocomposite as Lithium Storage Materials by Mechanical Deformation. Electrochimica Acta, 2016, 210, 301-307.                                             | 2.6 | 13        |
| 40 | Evaluation of EK System by DC and AC on Removal of Nitrate Complex. Separation Science and Technology, 2009, 44, 2269-2283.                                                                     | 1.3 | 12        |
| 41 | Removal of phosphate from agricultural soil by electrokinetic remediation with iron electrode.<br>Journal of Applied Electrochemistry, 2010, 40, 1101-1111.                                     | 1.5 | 12        |
| 42 | Electrokinetic Remediation of Saline Soil Using Pulse Power. Environmental Engineering Science, 2013, 30, 133-141.                                                                              | 0.8 | 12        |
| 43 | High areal capacity for battery anode using rapidly growing self-ordered TiO2 nanotubes with a high aspect ratio. Materials Letters, 2014, 137, 347-350.                                        | 1.3 | 11        |
| 44 | Fabrication of macroporous Si alloy anodes using polystyrene beads for lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 695-702.                                           | 1.5 | 9         |
| 45 | Design and electrochemical characteristics of single-layer cathode for flexible tubular type zinc-air<br>fuel cells. Journal of Alloys and Compounds, 2018, 740, 895-900.                       | 2.8 | 9         |
| 46 | Electrochemical studies on the performance of SS316L electrode in electrokinetics. Metals and Materials International, 2009, 15, 771-781.                                                       | 1.8 | 8         |
| 47 | Highly Reversible Cycling of Znâ€MnO <sub>2</sub> Batteries Integrated with Acidâ€Treated Carbon<br>Supportive Layer. Small Methods, 2022, 6, e2101060.                                         | 4.6 | 7         |
| 48 | Electrically Exploded Silicon/Carbon Nanocomposite as Anode Material for Lithium-ion Batteries.<br>Journal of Nanoscience and Nanotechnology, 2014, 14, 9340-9345.                              | 0.9 | 6         |
| 49 | Metal-assisted silicon based negative electrode for Li-ion batteries. Materials Letters, 2014, 126, 291-294.                                                                                    | 1.3 | 6         |
| 50 | Restoration of saline greenhouse soil and its effect on crop's growth through <i>in<br/>situ</i> field-scale electrokinetic technology. Separation Science and Technology, 2016, 51, 1227-1237. | 1.3 | 6         |
| 51 | Calcium zincate as an efficient reversible negative electrode material for rechargeable zinc–air<br>batteries. Ionics, 2019, 25, 1707-1713.                                                     | 1.2 | 6         |
| 52 | Effects of electrode loading on low temperature performances of Li-ion batteries. Physica Status<br>Solidi (A) Applications and Materials Science, 2014, 211, 2625-2630.                        | 0.8 | 5         |
| 53 | A pore-structured Si alloy anode using an unzipping polymer for a lithium ion battery. Journal of<br>Applied Electrochemistry, 2017, 47, 1127-1136.                                             | 1.5 | 5         |
| 54 | Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison. Carbon Letters, 2016, 17, 39-44.                                              | 3.3 | 5         |

JEONG-HEE CHOI

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of copper content in the new conductive material Cu-SPB used in low-temperature Li-ion batteries. Journal of the Korean Physical Society, 2014, 65, 317-324.                                         | 0.3 | 4         |
| 56 | Bismuth and its nanocomposite: Reaction mechanism and rational nanocomposite fabrication process<br>for superior sodiumâ€ion battery anodes. International Journal of Energy Research, 2022, 46, 9486-9497. | 2.2 | 3         |
| 57 | A Field Study on Electrokinetic Removal of Salts from Greenhouse Soil. Korean Chemical Engineering<br>Research, 2014, 52, 126-132.                                                                          | 0.2 | 0         |
| 58 | Highly Reversible Cycling of Znâ€MnO <sub>2</sub> Batteries Integrated with Acidâ€Treated Carbon<br>Supportive Layer (Small Methods 2/2022). Small Methods, 2022, 6, .                                      | 4.6 | 0         |