
Tilman Kottke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1476095/publications.pdf Version: 2024-02-01

TUMAN KOTTE

#	Article	IF	CITATIONS
1	Genetically Encoded Ratiometric pH Sensors for the Measurement of Intra- and Extracellular pH and Internalization Rates. Biosensors, 2022, 12, 271.	4.7	6
2	Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter, 2022, 18, 5492-5501.	2.7	4
3	Acrylamide precipitation polymerization in a continuous flow reactor: an in situ FTIR study reveals kinetics. Colloid and Polymer Science, 2021, 299, 221-232.	2.1	11
4	Smart membranes by electron beam cross-linking of copolymer microgels. Soft Matter, 2021, 17, 2205-2214.	2.7	12
5	Resolving Structural Changes of Photoreceptors in Living Escherichia coli via In-cell Infrared Difference Spectroscopy. Bio-protocol, 2021, 11, e3909.	0.4	0
6	Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Biochemistry, 2021, 60, 1148-1164.	2.5	5
7	Smart Microgels from Unconventional Acrylamides. Macromolecular Chemistry and Physics, 2021, 222, 2100067.	2.2	9
8	C-Terminal Extension of a Plant Cryptochrome Dissociates from the β-Sheet of the Flavin-Binding Domain. Journal of Physical Chemistry Letters, 2021, 12, 5558-5563.	4.6	7
9	DASH cryptochrome 1, a UVâ€A receptor, balances the photosynthetic machinery of <i>Chlamydomonas reinhardtii</i> . New Phytologist, 2021, 232, 610-624.	7.3	15
10	Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 5615-5628.	2.8	9
11	The World of Algae Reveals a Broad Variety of Cryptochrome Properties and Functions. Frontiers in Plant Science, 2021, 12, 766509.	3.6	20
12	Plant Cryptochromes Illuminated: A Spectroscopic Perspective on the Mechanism. Frontiers in Chemistry, 2021, 9, 780199.	3.6	6
13	Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization. Scientific Reports, 2020, 10, 18658.	3.3	12
14	Tongue Refolding in the Knotless Cyanobacterial Phytochrome All2699. Biochemistry, 2020, 59, 2047-2054.	2.5	7
15	Core–shell microgels as thermoresponsive carriers for catalytic palladium nanoparticles. Soft Matter, 2020, 16, 5422-5430.	2.7	30
16	In-cell infrared difference spectroscopy of LOV photoreceptors reveals structural responses to light altered in living cells. Journal of Biological Chemistry, 2020, 295, 11729-11741.	3.4	11
17	Calculation of the Geometries and Infrared Spectra of the Stacked Cofactor Flavin Adenine Dinucleotide (FAD) as the Prerequisite for Studies of Light-Triggered Proton and Electron Transfer. Biomolecules, 2020, 10, 573.	4.0	1
18	A quantum cascade laser setup for studying irreversible photoreactions in H ₂ 0 with nanosecond resolution and microlitre consumption. Physical Chemistry Chemical Physics, 2020, 22, 26459-26467.	2.8	4

#	Article	IF	CITATIONS
19	Time-Resolved Infrared and Visible Spectroscopy on Cryptochrome aCRY: Basis for Red Light Reception. Biophysical Journal, 2019, 117, 490-499.	0.5	8
20	Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics, 2019, 6, 034701.	2.3	10
21	Biphasic Formation of 2D Nanomembranes by Photopolymerization of Diacetylene Lipids as Revealed by Infrared Difference Spectroscopy. Langmuir, 2019, 35, 9343-9351.	3.5	1
22	Swelling behaviour of core–shell microgels in H ₂ O, analysed by temperature-dependent FTIR spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 572-580.	2.8	21
23	Synthesis of smart dual-responsive microgels: correlation between applied surfactants and obtained particle morphology. Soft Matter, 2019, 15, 5673-5684.	2.7	9
24	Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Physical Chemistry Chemical Physics, 2019, 21, 6622-6634.	2.8	15
25	Aurophilicity in action: stepwise formation of dinuclear Au(<scp>i</scp>) macrocycles with rigid 1,8-dialkynylanthracenes. Dalton Transactions, 2019, 48, 4109-4113.	3.3	7
26	Nuclear spin-hyperpolarization generated in a flavoprotein under illumination: experimental field-dependence and theoretical level crossing analysis. Scientific Reports, 2019, 9, 18436.	3.3	14
27	Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation. ACS Catalysis, 2019, 9, 1389-1395.	11.2	35
28	Characterization of Robust and Free-Standing 2D-Nanomembranes of UV-Polymerized Diacetylene Lipids. Langmuir, 2018, 34, 3256-3263.	3.5	6
29	Time-Resolved Infrared Spectroscopy on Plant Cryptochrome—Relevance of Proton Transfer and ATP Binding for Signaling. Journal of Physical Chemistry A, 2018, 122, 140-147.	2.5	12
30	Photochemically Driven Biocatalysis of Halogenases for the Green Production of Chlorinated Compounds. ChemCatChem, 2018, 10, 3336-3341.	3.7	30
31	Photoreceptors Take Charge: Emerging Principles for Light Sensing. Annual Review of Biophysics, 2018, 47, 291-313.	10.0	65
32	Phosphorus and nitrogen starvation reveal life ycle specific responses in the metabolome of <i>Emiliania huxleyi</i> (Haptophyta). Limnology and Oceanography, 2018, 63, 203-226.	3.1	23
33	Chromophore–Protein Interplay during the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 12396-12404.	13.7	51
34	A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS ONE, 2018, 13, e0196797.	2.5	57
35	Single-Shot Sub-microsecond Mid-infrared Spectroscopy on Protein Reactions with Quantum Cascade Laser Frequency Combs. Analytical Chemistry, 2018, 90, 10494-10500.	6.5	123
36	Boreal pollen contain ice-nucleating as well as ice-binding â€~antifreeze' polysaccharides. Scientific Reports, 2017, 7, 41890.	3.3	97

#	Article	IF	CITATIONS
37	An Animal-Like Cryptochrome Controls the <i>Chlamydomonas</i> Sexual Cycle. Plant Physiology, 2017, 174, 1334-1347.	4.8	35
38	Lightâ€Induced Conformational Changes in the Plant Cryptochrome Photolyase Homology Region Resolved by Selective Isotope Labeling and Infrared Spectroscopy. Photochemistry and Photobiology, 2017, 93, 881-887.	2.5	10
39	Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. Journal of Plant Physiology, 2017, 217, 4-14.	3.5	51
40	A Plant Cryptochrome Controls Key Features of the <i>Chlamydomonas</i> Circadian Clock and Its Life Cycle. Plant Physiology, 2017, 174, 185-201.	4.8	50
41	Recombinant expression and characterization of a l-amino acid oxidase from the fungus Rhizoctonia solani. Applied Microbiology and Biotechnology, 2017, 101, 2853-2864.	3.6	20
42	An update on aureochromes: Phylogeny – mechanism – function. Journal of Plant Physiology, 2017, 217, 20-26.	3.5	57
43	The cryptochrome—photolyase protein family in diatoms. Journal of Plant Physiology, 2017, 217, 15-19.	3.5	26
44	Microphase separation of smart double-responsive copolymer microgels studied by local fluorescence probes. Polymer, 2017, 125, 110-116.	3.8	12
45	Preparation of 2D Phospholipid and Copolymer Nanomembranes. Materials Today: Proceedings, 2017, 4, S87-S92.	1.8	2
46	The Grateful Infrared: Sequential Protein Structural Changes Resolved by Infrared Difference Spectroscopy. Journal of Physical Chemistry B, 2017, 121, 335-350.	2.6	69
47	Activation of Recombinantly Expressed l-Amino Acid Oxidase from Rhizoctonia solani by Sodium Dodecyl Sulfate. Molecules, 2017, 22, 2272.	3.8	12
48	Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry. Scientific Reports, 2016, 6, 22669.	3.3	64
49	A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature, 2016, 537, 563-566.	27.8	185
50	Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes. Nucleic Acids Research, 2016, 44, 5957-5970.	14.5	53
51	Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY. Journal of Biological Chemistry, 2016, 291, 14062-14071.	3.4	51
52	Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum. Structure, 2016, 24, 171-178.	3.3	47
53	Proton Transfer to Flavin Stabilizes the Signaling State of the Blue Light Receptor Plant Cryptochrome. Journal of Biological Chemistry, 2015, 290, 1743-1751.	3.4	50
54	Allosterically Regulated Unfolding of the A′α Helix Exposes the Dimerization Site of the Blue-Light-Sensing Aureochrome-LOV Domain. Biochemistry, 2015, 54, 1484-1492.	2.5	46

#	Article	IF	CITATIONS
55	Microsecond Deprotonation of Aspartic Acid and Response of the α/β Subdomain Precede C-Terminal Signaling in the Blue Light Sensor Plant Cryptochrome. Journal of the American Chemical Society, 2015, 137, 5990-5999.	13.7	49
56	A novel cryptochrome in the diatom <i><scp>P</scp>haeodactylumÂtricornutum</i> influences the regulation of lightâ€harvesting protein levels. FEBS Journal, 2014, 281, 2299-2311.	4.7	52
57	Response of the Sensory Animal-like Cryptochrome aCRY to Blue and Red Light As Revealed by Infrared Difference Spectroscopy. Biochemistry, 2014, 53, 1041-1050.	2.5	24
58	Protonated triplet-excited flavin resolved by step-scan FTIR spectroscopy: implications for photosensory LOV domains. Physical Chemistry Chemical Physics, 2013, 15, 5916.	2.8	29
59	News about cryptochrome photoreceptors in algae. Plant Signaling and Behavior, 2013, 8, e22870.	2.4	25
60	Blue-Light-Induced Unfolding of the Jα Helix Allows for the Dimerization of Aureochrome-LOV from the Diatom <i>Phaeodactylum tricornutum</i> . Biochemistry, 2013, 52, 3094-3101.	2.5	60
61	Primary Events in the Blue Light Sensor Plant Cryptochrome: Intraprotein Electron and Proton Transfer Revealed by Femtosecond Spectroscopy. Journal of the American Chemical Society, 2012, 134, 12536-12546.	13.7	70
62	A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2012, 24, 2992-3008.	6.6	151
63	Single Amino Acid Substitution Reveals Latent Photolyase Activity in <i>Arabidopsis</i> cry1. Angewandte Chemie - International Edition, 2012, 51, 9356-9360.	13.8	31
64	Die große Ausnahme: flavinhaltige Blaulichtsensoren. Nachrichten Aus Der Chemie, 2011, 59, 23-28.	0.0	1
65	Indication for a Radical Intermediate Preceding the Signaling State in the LOV Domain Photocycle ^{â€} . Photochemistry and Photobiology, 2011, 87, 548-553.	2.5	32
66	Infrared spectrum and absorption coefficient of the cofactor flavin in water. Vibrational Spectroscopy, 2011, 57, 282-287.	2.2	33
67	Photoreaction of Plant and DASH Cryptochromes Probed by Infrared Spectroscopy: The Neutral Radical State of Flavoproteins. Journal of Physical Chemistry B, 2010, 114, 17155-17161.	2.6	36
68	Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems. Angewandte Chemie - International Edition, 2010, 49, 5416-5424.	13.8	96
69	Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 3156-3159.	4.6	38
70	Blue Light Induces Global and Localized Conformational Changes in the Kinase Domain of Full-Length Phototropin. Biochemistry, 2010, 49, 1024-1032.	2.5	55
71	Solid-State Photo-CIDNP Effect Observed in Phototropin LOV1-C57S by ¹³ C Magic-Angle Spinning NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 15542-15543.	13.7	51
72	Synthesis of Monodisperse Oligo(1,4-phenyleneethynylene-alt-1,4-triptycyleneethynylene)s. Journal of Organic Chemistry, 2009, 74, 7733-7742.	3.2	10

#	Article	IF	CITATIONS
73	Microsecond Light-Induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. Journal of the American Chemical Society, 2009, 131, 14274-14280.	13.7	85
74	Time-Resolved Fourier Transform Infrared Study on Photoadduct Formation and Secondary Structural Changes within the Phototropin LOV Domain. Biophysical Journal, 2009, 96, 1462-1470.	0.5	72
75	Tailoring the properties and the reactivity of the spinel cobalt oxide. Physical Chemistry Chemical Physics, 2009, 11, 9224.	2.8	144
76	Blue Light Induces Radical Formation and Autophosphorylation in the Light-sensitive Domain of Chlamydomonas Cryptochrome. Journal of Biological Chemistry, 2007, 282, 21720-21728.	3.4	62
77	A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome. Journal of Biological Chemistry, 2007, 282, 13011-13021.	3.4	178
78	Timeâ€Resolved FTâ€IR Spectroscopy Traces Signal Relay within the Blueâ€Light Receptor AppA. ChemPhysChem, 2007, 8, 1787-1789.	2.1	28
79	Blue-Light-Induced Changes in Arabidopsis Cryptochrome 1 Probed by FTIR Difference Spectroscopy. Biochemistry, 2006, 45, 2472-2479.	2.5	103
80	The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers, 2006, 82, 373-378.	2.4	31
81	The Phot LOV2 Domain and Its Interaction with LOV1. Biophysical Journal, 2005, 89, 402-412.	0.5	72
82	Recording of Blue Light-Induced Energy and Volume Changes within the Wild-Type and Mutated Phot-LOV1 Domain from Chlamydomonas reinhardtii. Biophysical Journal, 2004, 86, 1051-1060.	0.5	66
83	Irreversible Photoreduction of Flavin in a Mutated Phot-LOV1 Domainâ€. Biochemistry, 2003, 42, 9854-9862.	2.5	54
84	Phot-LOV1: Photocycle of a Blue-Light Receptor Domain from the Green Alga Chlamydomonas reinhardtii. Biophysical Journal, 2003, 84, 1192-1201.	0.5	227