Susan J Mazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	3.2	1,004
2	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	8.3	888
3	Ecological, Taxonomic, and Life History Correlates of Seed Mass Among Indiana Dune Angiosperms. Ecological Monographs, 1989, 59, 153-175.	5.4	266
4	Old Plants, New Tricks: Phenological Research Using Herbarium Specimens. Trends in Ecology and Evolution, 2017, 32, 531-546.	8.7	232
5	The Quantitative Genetics of Life History and Fitness Components in Raphanus raphanistrum L. (Brassicaceae): Ecological and Evolutionary Consequences of Seed-Weight Variation. American Naturalist, 1987, 130, 891-914.	2.1	185
6	Phylogenetic conservatism in plant phenology. Journal of Ecology, 2013, 101, 1520-1530.	4.0	182
7	PARENTAL EFFECTS ON SEED DEVELOPMENT AND SEED YIELD IN <i>RAPHANUS RAPHANISTRUM</i> : IMPLICATIONS FOR NATURAL AND SEXUAL SELECTION. Evolution; International Journal of Organic Evolution, 1987, 41, 355-371.	2.3	115
8	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	3.4	107
9	FERTILIZATION DYNAMICS AND PARENTAL EFFECTS UPON FRUIT DEVELOPMENT IN RAPHANUS RAPHANISTRUM: CONSEQUENCES FOR SEED SIZE VARIATION. American Journal of Botany, 1986, 73, 500-511.	1.7	99
10	Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant. ACS Nano, 2015, 9, 11737-11749.	14.6	96
11	Seed mass of Indiana Dune genera and families: Taxonomic and ecological correlates. Evolutionary Ecology, 1990, 4, 326-357.	1.2	92
12	Relationship between genetic structure and seed and pollen dispersal in the endangered orchidSpiranthes spiralis. New Phytologist, 2003, 157, 677-687.	7.3	83
13	Geographic variation in seed mass within and among nine species of <i>Pedicularis</i> (Orobanchaceae): effects of elevation, plant size and seed number per fruit. Journal of Ecology, 2010, 98, 1232-1242.	4.0	79
14	The plant phenology monitoring design for The National Ecological Observatory Network. Ecosphere, 2016, 7, e01303.	2.2	72
15	Historical changes in flowering phenology are governed by temperatureÂ×Âprecipitation interactions in a widespread perennial herb in western North America. New Phytologist, 2016, 210, 157-167.	7.3	69
16	Nitrogen:phosphorous supply ratio and allometry in five alpine plant species. Ecology and Evolution, 2016, 6, 8881-8892.	1.9	61
17	Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research. BioScience, 2020, 70, 610-620.	4.9	61
18	RESPONSES OF FLORAL TRAITS TO SELECTION ON PRIMARY SEXUAL INVESTMENT IN <i>SPERGULARIA MARINA</i> : THE BATTLE BETWEEN THE SEXES. Evolution; International Journal of Organic Evolution, 1999, 53, 717-731.	2.3	58

SUSAN J MAZER

#	Article	IF	CITATIONS
19	GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumis sativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environmental Science: Nano, 2016, 3, 1114-1123.	4.3	58
20	Project Baseline: An unprecedented resource to study plant evolution across space and time. American Journal of Botany, 2016, 103, 164-173.	1.7	58
21	Sizeâ€dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): ontogenetic and amongâ€plant variation. American Journal of Botany, 2001, 88, 819-831.	1.7	57
22	Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa. American Journal of Botany, 2013, 100, 1381-1397.	1.7	54
23	Physiological Performance in <i>Clarkia</i> Sister Taxa with Contrasting Mating Systems: Do Early-Flowering Autogamous Taxa Avoid Water Stress Relative to Their Pollinator-Dependent Counterparts?. International Journal of Plant Sciences, 2010, 171, 1029-1047.	1.3	49
24	SEED MASS, SEEDLING EMERGENCE, AND ENVIRONMENTAL FACTORS IN SEVEN RAIN FORESTPSYCHOTRIA(RUBIACEAE). Ecology, 1999, 80, 1594-1606.	3.2	48
25	Life history, floral development, and mating system in <i>Clarkia xantiana</i> (Onagraceae): do floral and wholeâ€plant rates of development evolve independently?. American Journal of Botany, 2004, 91, 2041-2050.	1.7	47
26	Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants. Applications in Plant Sciences, 2018, 6, e1022.	2.1	46
27	Seed mass, abundance and breeding system among tropical forest species: do dioecious species exhibit compensatory reproduction or abundances?. Journal of Ecology, 2009, 97, 555-566.	4.0	45
28	Allee effects within small populations of <i>Aconitum napellus</i> ssp. <i>lusitanicum</i> , a protected subspecies in northern France. New Phytologist, 2008, 179, 1171-1182.	7.3	43
29	Phenological responsiveness to climate differs among four species of <i>Quercus</i> in North America. Journal of Ecology, 2017, 105, 1610-1622.	4.0	42
30	Speciesâ€specific phenological responses to winter temperature and precipitation in a waterâ€limited ecosystem. Ecosphere, 2015, 6, 1-27.	2.2	41
31	Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net. Global Change Biology, 2018, 24, 5972-5984.	9.5	40
32	Fertilization Dynamics and Parental Effects Upon Fruit Development in Raphanus raphanistrum: Consequences for Seed Size Variation. American Journal of Botany, 1986, 73, 500.	1.7	36
33	Reproductive allometry in <i>Pedicularis</i> species changes with elevation. Journal of Ecology, 2012, 100, 452-458.	4.0	32
34	Pollen—Tiny and ephemeral but not forgotten: New ideas on their ecology and evolution. American Journal of Botany, 2016, 103, 365-374.	1.7	31
35	Stability of pollen–ovule ratios in pollinatorâ€dependent versus autogamous <i>Clarkia</i> sister taxa: testing evolutionary predictions. New Phytologist, 2009, 183, 630-648. 	7.3	29
36	Maternal investment and male reproductive success in angiosperms: parent-offspring conflict or sexual selection?. Biological Journal of the Linnean Society, 1987, 30, 115-133.	1.6	27

SUSAN J MAZER

#	Article	IF	CITATIONS
37	Geographic variation in primary sex allocation per flower within and among 12 species of <i>Pedicularis</i> (Orobanchaceae): Proportional male investment increases with elevation. American Journal of Botany, 2010, 97, 1334-1341.	1.7	27
38	A new fineâ€grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction. Applications in Plant Sciences, 2020, 8, e11368.	2.1	27
39	Contrasting variation within and covariation between gender-related traits in autogamous versus outcrossing species: Alternative evolutionary predictions. Evolutionary Ecology, 1998, 12, 403-425.	1.2	26
40	Local Adaptation and Effects of Grazing among Seedlings of Two Native California Bunchgrass Species: Implications for Restoration. Restoration Ecology, 2008, 16, 59-69.	2.9	25
41	Divergence in pollen performance between <i>Clarkia</i> sister species with contrasting mating systems supports predictions of sexual selection. Evolution; International Journal of Organic Evolution, 2018, 72, 453-472.	2.3	24
42	Evolving plans for the USA National Phenology Network. Eos, 2007, 88, 211-211.	0.1	23
43	Winning in style: Longer styles receive more pollen, but style length does not affect pollen attrition in wild Clarkia populations. American Journal of Botany, 2016, 103, 408-422.	1.7	23
44	Outcrossing and photosynthetic rates vary independently within two <i>Clarkia</i> species: implications for the joint evolution of drought escape physiology and mating system. Annals of Botany, 2016, 118, 897-905.	2.9	22
45	Advancing frost dates have reduced frost risk among most North American angiosperms since 1980. Global Change Biology, 2021, 27, 165-176.	9.5	21
46	Sizeâ€dependent pollen:ovule ratios and the allometry of floral sex allocation in <i>Clarkia</i> (Onagraceae) taxa with contrasting mating systems. American Journal of Botany, 2009, 96, 968-978.	1.7	20
47	Climate Predicts UV Floral Pattern Size, Anthocyanin Concentration, and Pollen Performance in Clarkia unguiculata. Frontiers in Plant Science, 2020, 11, 847.	3.6	20
48	EVOLUTION OF MATING SYSTEM AND THE GENETIC COVARIANCE BETWEEN MALE AND FEMALE INVESTMENT IN CLARKIA (ONAGRACEAE): SELFING OPPOSES THE EVOLUTION OF TRADE-OFFS. Evolution; International Journal of Organic Evolution, 2007, 61, 83-98.	2.3	19
49	Local Adaptation and the Effects of Grazing on the Performance of <i>Nassella pulchra</i> : Implications for Seed Sourcing in Restoration. Restoration Ecology, 2012, 20, 688-695.	2.9	19
50	How climate change affects plants' sex lives. Science, 2016, 353, 32-33.	12.6	19
51	TEMPORAL INSTABILITY OF GENETIC COMPONENTS OF FLORAL TRAIT VARIATION: MATERNAL FAMILY AND POPULATION EFFECTS IN <i>SPERGULARIA MARINA</i> (CARYOPHYLLACEAE). Evolution; International Journal of Organic Evolution, 1996, 50, 2509-2515.	2.3	16
52	Regionâ€specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range. American Journal of Botany, 2021, 108, 1873-1888.	1.7	16
53	Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations. American Journal of Botany, 2016, 103, 140-152.	1.7	15
54	Seed set variation in wild Clarkia populations: teasing apart the effects of seasonal resource depletion, pollen quality, and pollen quantity. Ecology and Evolution, 2016, 6, 6524-6536.	1.9	14

SUSAN J MAZER

#	Article	IF	CITATIONS
55	A new phenological metric for use in phenoâ€climatic models: A case study using herbarium specimens of Streptanthus tortuosus. Applications in Plant Sciences, 2019, 7, e11276.	2.1	14
56	PHENOLOGICAL TRENDS IN THE CALIFORNIA POPPY (ESCHSCHOLZIA CALIFORNICA): DIGITIZED HERBARIUM SPECIMENS REVEAL INTRASPECIFIC VARIATION IN THE SENSITIVITY OF FLOWERING DATE TO CLIMATE CHANGE. Madro \tilde{A} ±0, 2021, 68, .	0.4	14
57	The absence of cryptic selfâ€incompatibility in Clarkia unguiculata (Onagraceae). American Journal of Botany, 2000, 87, 191-196.	1.7	13
58	PhenoForecaster: A software package for the prediction of flowering phenology. Applications in Plant Sciences, 2019, 7, e01230.	2.1	13
59	TRADE-OFFS BETWEEN MALE AND FEMALE REPRODUCTION ASSOCIATED WITH ALLOZYME VARIATION IN PHOSPHOGLUCOISOMERASE IN AN ANNUAL PLANT (CLARKIA UNGUICULATA: ONAGRACEAE). Evolution; International Journal of Organic Evolution, 2001, 55, 2421-2428.	2.3	12
60	PHENOLOGICAL SENSITIVITIES TO CLIMATE ARE SIMILAR IN TWO CLARKIA CONGENERS: INDIRECT EVIDENCE FOR FACILITATION, CONVERGENCE, NICHE CONSERVATISM, OR GENETIC CONSTRAINTS. Madroño, 2021, 68, .	0.4	12
61	The California Phenology Project: Tracking Plant Responses to Climate Change. Madroño, 2013, 60, 1-3.	0.4	11
62	Could seasonally deteriorating environments favour the evolution of autogamous selfing and a drought escape physiology through indirect selection? A test of the time limitation hypothesis using artificial selection in Clarkia. Annals of Botany, 2018, 121, 753-766.	2.9	11
63	Mating system and historical climate conditions affect population mean seed mass: Evidence for adaptation and a new component of the selfing syndrome in Clarkia. Journal of Ecology, 2020, 108, 1523-1539.	4.0	11
64	Heteranthery in <i>Clarkia</i> : pollen performance of dimorphic anthers contradicts expectations. American Journal of Botany, 2019, 106, 598-603.	1.7	9
65	Climate affects the rate at which species successively flower: Capturing an emergent property of regional floras. Global Ecology and Biogeography, 2019, 28, 1078.	5.8	9
66	Pollinator limitation causes sexual reproductive failure in <i>ex situ</i> populations of self-compatible <i>Iris ensata</i> . Plant Ecology and Diversity, 2019, 12, 21-35.	2.4	8
67	Sexâ€specific floral attraction traits in a sequentially hermaphroditic species. Ecology and Evolution, 2020, 10, 1856-1875.	1.9	6
68	Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of Streptanthus tortuosus. Plants, 2021, 10, 2471.	3.5	6
69	Soil heterogeneity and the distribution of native grasses in California: Can soil properties inform restoration plans?. Ecosphere, 2014, 5, 1-14.	2.2	4
70	Geographic variation in offspring size: Long―and shortâ€ŧerm climate affect mean seed mass of <i>Streptanthus</i> populations. Ecology, 2022, 103, e3698.	3.2	4
71	Floral traits influence the opportunity for selection among male gametophytes: independent and combined effects ofÂstyle length and petal area. American Journal of Botany, 2019, 106, 744-753.	1.7	2
72	Testing mechanisms of compensatory fitness of dioecy in a cosexual world. Journal of Vegetation Science, 2019, 30, 413-426.	2.2	2

#	Article	IF	CITATIONS
73	Tradeâ€off drives Pareto optimality of within―and amongâ€year emergence timing in response to increasing aridity. Evolutionary Applications, 2021, 14, 658-673.	3.1	2
74	Contextâ€dependent concordance between physiological divergence and phenotypic selection in sister taxa with contrasting phenology and mating systems. American Journal of Botany, 2022, 109, 1757-1779.	1.7	1
75	2018 CBS Banquet at UC Davis. Madroño, 2018, 65, 65-65.	0.4	0
76	2019 GRADUATE STUDENT SYMPOSIUM AT CAL POLY, SAN LUIS OBISPO. Madro $ ilde{A}$ ±o, 2019, 66, 36.	0.4	0
77	2020 CBS BANQUET AT UC SANTA CRUZ. Madroño, 2020, 66, 194.	0.4	0