Bin Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1475661/bin-zhang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52	2,897	29	53
papers	citations	h-index	g-index
53 ext. papers	3,407 ext. citations	9.2 avg, IF	5.33 L-index

#	Paper	IF	Citations
52	Thermally stable single atom Pt/m-AlO for selective hydrogenation and CO oxidation. <i>Nature Communications</i> , 2017 , 8, 16100	17.4	390
51	Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 10443-8	3.4	308
50	Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8319-23	16.4	294
49	The support effect on the size and catalytic activity of thiolated Aulhanoclusters as precatalysts. <i>Nanoscale</i> , 2015 , 7, 6325-33	7.7	122
48	Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. <i>Journal of Molecular Catalysis A</i> , 2011 , 351, 217-227		120
47	Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase. <i>Green Chemistry</i> , 2012 , 14, 3402	10	99
46	Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. <i>Carbon</i> , 2016 , 98, 196-203	10.4	95
45	Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9006-10	16.4	89
44	Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. <i>Catalysis Science and Technology</i> , 2016 , 6, 2112-2119	5.5	83
43	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7081-5	16.4	74
42	Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition. ACS Catalysis, 2018, 8, 100	064 ₃ 100	18 7 1
41	Highly Efficient Microwave Absorption of Magnetic Nanospindle-Conductive Polymer Hybrids by Molecular Layer Deposition. <i>ACS Applied Materials & Deposition (Naterials & Depos</i>	9.5	70
40	High Efficiency Cu-ZnO Hydrogenation Catalyst: The Tailoring of Cu-ZnO Interface Sites by Molecular Layer Deposition. <i>ACS Catalysis</i> , 2015 , 5, 5567-5573	13.1	70
39	Aqueous-Phase Hydrogenolysis of Glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2. <i>Catalysis Letters</i> , 2012 , 142, 267-274	2.8	68
38	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. <i>Nano Research</i> , 2017 , 10, 1595-1607	10	62
37	Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. <i>Chemical Engineering Journal</i> , 2020 , 382, 122860	14.7	61
36	Bifunctional Nitrogen and Cobalt Codoped Hollow Carbon for Electrochemical Syngas Production. <i>Advanced Science</i> , 2018 , 5, 1800177	13.6	60

35	Porous TiO2/Pt/TiO2 Sandwich Catalyst for Highly Selective Semihydrogenation of Alkyne to Olefin. <i>ACS Catalysis</i> , 2017 , 7, 6567-6572	13.1	55	
34	Tailoring Pt E e2O3 Interfaces for Selective Reductive Coupling Reaction To Synthesize Imine. <i>ACS Catalysis</i> , 2016 , 6, 6560-6566	13.1	54	
33	Modification of the supported Cu/SiO2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to Ebutyrolactone. <i>Applied Catalysis A: General</i> , 2012 , 443-444, 191-201	5.1	53	
32	Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. <i>Carbon</i> , 2015 , 82, 470-478	10.4	35	
31	Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118133	21.8	33	
30	Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors. <i>Journal of Power Sources</i> , 2016 , 315, 254-260	8.9	31	
29	Thermally-assisted photocatalytic CO2 reduction to fuels. <i>Chemical Engineering Journal</i> , 2021 , 408, 127	2 8 Ф.7	31	
28	Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17669-17675	13	30	
27	Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition. <i>Catalysis Science and Technology</i> , 2015 , 5, 4218-4223	5.5	30	
26	Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction. <i>Innovation(China)</i> , 2020 , 1, 100029	17.8	30	
25	Encapsulation of Homogeneous Catalysts in Mesoporous Materials Using Diffusion-Limited Atomic Layer Deposition. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1091-1095	16.4	30	
24	Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. <i>Journal of Catalysis</i> , 2017 , 353, 315-324	7.3	29	
23	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. <i>Chemistry - A European Journal</i> , 2016 , 22, 8438-43	4.8	28	
22	Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics. <i>Catalysis Science and Technology</i> , 2017 , 7, 1342-1350	5.5	27	
21	Structure and reactivity of single site Ti catalysts for propylene epoxidation. <i>Journal of Catalysis</i> , 2019 , 377, 419-428	7.3	22	
20	The effect of Mg(OH)2 on furfural oxidation with H2O2. Catalysis Communications, 2016, 86, 41-45	3.2	21	
19	Highly Dispersed Single-Atom Pt and Pt Clusters in the Fe-Modified KL Zeolite with Enhanced Selectivity for -Heptane Aromatization. <i>ACS Applied Materials & Disperse (Continued of Continued of Continu</i>	9.5	21	
18	Transesterification of dimethyl carbonate with tetrahydrofurfuryl alcohol on the K2CO3/ZrO2 catalystEunction of the surface carboxylate species. <i>Applied Catalysis B: Environmental</i> , 2014 , 152-153, 226-232	21.8	20	

17	Catalytic degradation of oxygenates in Fischer Tropsch aqueous phase effluents to fuel gas via hydrodeoxygenation over Ru/AC catalyst. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 112-122	3.5	19
16	Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. <i>Journal of Catalysis</i> , 2018 , 365, 163-173	7.3	18
15	Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. <i>Angewandte Chemie</i> , 2015 , 127, 9134-9138	3.6	18
14	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. <i>Angewandte Chemie</i> , 2016 , 128, 7197-7201	3.6	18
13	Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid. <i>Journal of Fuel Chemistry and Technology</i> , 2017 , 45, 714-722	1.8	17
12	Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots. <i>Catalysis Science and Technology</i> , 2019 , 9, 2266-2272	5.5	16
11	High photocatalytic activity of a NiO nanodot-decorated Pd/SiC catalyst for the Suzuki-Miyaura cross-coupling of aryl bromides and chlorides in air under visible light. <i>Journal of Catalysis</i> , 2020 , 389, 517-524	7.3	16
10	InGaN/GaN Multiple Quantum Well Photoanode Modified with Cobalt Oxide for Water Oxidation. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6417-6424	6.1	15
9	Rational construction of porous N-doped FeO films on porous graphene foams by molecular layer deposition for tunable microwave absorption. <i>Journal of Colloid and Interface Science</i> , 2021 , 598, 45-55	9.3	13
8	N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 1038-1043	11.3	11
7	Encapsulation of Homogeneous Catalysts in Mesoporous Materials Using Diffusion-Limited Atomic Layer Deposition. <i>Angewandte Chemie</i> , 2018 , 130, 1103-1107	3.6	7
6	The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. <i>Science China Chemistry</i> , 2021 , 64, 1088-1095	7.9	4
5	Strong Co-O-Si bonded ultra-stable single-atom Co/SBA-15 catalyst for selective hydrogenation of CO2 to CO. <i>Chem Catalysis</i> , 2022 , 2, 610-621		4
4	Synthesis of Tetrahydropyran from Tetrahydrofurfuryl Alcohol over Cu Z no/Al2O3 under a Gaseous-Phase Condition. <i>Catalysts</i> , 2018 , 8, 105	4	3
3	Encapsulation of atomically dispersed Pt clusters in porous TiO for semi-hydrogenation of phenylacetylene <i>Chemical Communications</i> , 2022 ,	5.8	1
2	Synthesis of ZIF-8-coated Pt/SiO2 by vapor deposition for alkyne semi-hydrogenation. <i>Journal of Fuel Chemistry and Technology</i> , 2021 , 49, 1316-1325	1.8	1
1	Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition. <i>Cell Reports Physical Science</i> , 2022 , 3, 100787	6.1	О