Sebastian Maletti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/147562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding Component‧pecific Contributions and Internal Dynamics in Silicon/Graphite Blended Electrodes for Highâ€Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	23
2	Understanding Li Plating and Stripping Behavior in Zero-Excess Li Metal Batteries Using Operando Dilatometry. Journal of the Electrochemical Society, 2022, 169, 030543.	1.3	14
3	Laboratory X-ray Microscopy Study of Microcrack Evolution in a Novel Sodium Iron Titanate-Based Cathode Material for Li-Ion Batteries. Crystals, 2022, 12, 3.	1.0	3
4	Electrochemical Patterning of Cu Current Collectors: An Enabler for Pure Silicon Anodes in Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	6
5	Operation Mechanism in Hybrid Mg–Li Batteries with TiNb ₂ O ₇ Allowing Stable High-Rate Cycling. ACS Applied Materials & Interfaces, 2021, 13, 6309-6321.	4.0	13
6	A Highly Conductive Gel Polymer Electrolyte for Li–Mg Hybrid Batteries. ACS Applied Energy Materials, 2021, 4, 1906-1914.	2.5	3
7	Electrochemical Characterization of Battery Materials in 2â€Electrode Halfâ€Cell Configuration: A Balancing Act Between Simplicity and Pitfalls. Batteries and Supercaps, 2021, 4, 1310-1322.	2.4	22
8	Molecular Engineering Approaches to Fabricate Artificial Solidâ€Electrolyte Interphases on Anodes for Liâ€Ion Batteries: A Critical Review. Advanced Energy Materials, 2021, 11, 2101173.	10.2	50
9	Structural Aspects of P2â€Type Na _{0.67} Mn _{0.6} Ni _{0.2} Li _{0.2} O ₂ (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodiumâ€ion Batteries. Advanced Functional Materials. 2021. 31. 2102939.	7.8	35
10	Diethylzinc-Assisted Atomic Surface Reduction to Stabilize Li and Mn-Rich NCM. ACS Applied Materials & amp; Interfaces, 2021, 13, 44470-44478.	4.0	3
11	From Lithiumâ€Metal toward Anodeâ€Free Solidâ€State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials, 2021, 31, 2106608.	7.8	98
12	Synthesis of (Li2Fe1–yMny)SO Antiperovskites with Comprehensive Investigations of (Li2Fe0.5Mn0.5)SO as Cathode in Li-ion Batteries. Inorganic Chemistry, 2020, 59, 15626-15635.	1.9	10
13	In-Depth Study of Li ₄ Ti ₅ O ₁₂ Performing beyond Conventional Operating Conditions. ACS Applied Materials & amp; Interfaces, 2020, 12, 37227-37238.	4.0	12
14	LiV ₃ O ₈ -Based Functional Separator Coating as Effective Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 2893-2899.	2.5	27
15	TiNb ₂ O ₇ and VNb ₉ O ₂₅ of ReO ₃ Type in Hybrid Mg–Li Batteries: Electrochemical and Interfacial Insights. Journal of Physical Chemistry C, 2020, 124, 25239-25248.	1.5	5
16	Comparison of Layered Li(Li0.2Rh0.8)O2 and LiRhO2 upon Li Removal: Stabilizing Effect of Li Substitution. Inorganic Chemistry, 2020, 59, 9108-9115.	1.9	0
17	<i>Operando</i> Studies on the NaNi _{0.5} Ti _{0.5} O ₂ Cathode for Na-Ion Batteries: Elucidating Titanium as a Structure Stabilizer. ACS Applied Materials & Interfaces, 2019, 11, 33923-33930.	4.0	23
18	Studies on Full Na-Ion Batteries with a Hard Carbon Anode and Oxide Cathode Materials. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
19	Lattice Analysis By Synchrotron Powder Diffraction on High Voltage Spinel LiNi0.5Mn1.5O4. ECS Meeting Abstracts, 2019, , .	0.0	0
20	Application of the Hybrid-Ion Battery Concept to Selected Oxide Systems. ECS Meeting Abstracts, 2019, ,	0.0	0
21	Electrochemical behavior of LiV3O8 positive electrode in hybrid Li,Na–ion batteries. Journal of Power Sources, 2018, 373, 1-10.	4.0	15
22	Irreversible Made Reversible: Increasing the Electrochemical Capacity by Understanding the Structural Transformations of Na _{<i>x</i>} Co _{0.5} Ti _{0.5} O ₂ . ACS Applied Materials & amp; Interfaces, 2018, 10, 36108-36119.	4.0	10
23	Operando Studies of Antiperovskite Lithium Battery Cathode Material (Li ₂ Fe)SO. ACS Applied Energy Materials, 2018, 1, 6593-6599.	2.5	15
24	One-Pot Synthesis of Graphene-Sulfur Composites for Li-S Batteries: Influence of Sulfur Precursors. Journal of Carbon Research, 2018, 4, 2.	1.4	7