
Tinte Itinteang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475600/publications.pdf Version: 2024-02-01

TINTE TINTEANC

#	Article	IF	CITATIONS
1	Cancer Stem Cells in Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System. Cells, 2021, 10, 243.	1.8	13
2	Expression of Components of the Renin-Angiotensin System by Cancer Stem Cells in Renal Clear Cell Carcinoma. Biomolecules, 2021, 11, 537.	1.8	12
3	Expression of Angiotensin II Receptor 2 in Microcystic Lymphatic Malformation. Journal of Vascular Anomalies, 2021, 2, e020.	0.1	2
4	Cell Populations Expressing Stemness-Associated Markers in Lung Adenocarcinoma. Life, 2021, 11, 1106.	1.1	6
5	Proliferating infantile hemangioma promotes α-fetoprotein production by HepG2 cells. Pediatric Research, 2020, 87, 3-6.	1.1	1
6	A Large Dermoid Cyst Causing Plagiocephaly. Journal of Craniofacial Surgery, 2020, 31, e155-e156.	0.3	0
7	Cancer Stem Cell Subpopulations Are Present Within Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 1091.	1.3	13
8	Expression of Cathepsins B, D, and G in Microcystic Lymphatic Malformation. Lymphatic Research and Biology, 2020, 19, 347-354.	0.5	3
9	Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells, 2020, 9, 324.	1.8	20
10	Proliferating Infantile Hemangioma Tissues and Primary Cell Lines Express Markers Associated with Endothelial-to-Mesenchymal Transition. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2598.	0.3	1
11	Cancer Stem Cells in Head and Neck Cutaneous Squamous Cell Carcinoma Express Cathepsins. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e3042.	0.3	9
12	Stem Cells in Keloid Lesions: A Review. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2228.	0.3	29
13	Cancer stem cell subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma. Heliyon, 2019, 5, e02257.	1.4	23
14	Cancer stem cell subpopulations in primary colon adenocarcinoma. PLoS ONE, 2019, 14, e0221963.	1.1	25
15	Expression of Components of the Renin-Angiotensin System by the Putative Stem Cell Population Within WHO Grade I Meningioma. Frontiers in Surgery, 2019, 6, 23.	0.6	6
16	Expression of (pro)renin receptor and its effect on endothelial cell proliferation in infantile hemangioma. Pediatric Research, 2019, 86, 202-207.	1.1	13
17	Expression of Components of the Renin-Angiotensin System in Pyogenic Granuloma. Frontiers in Surgery, 2019, 6, 13.	0.6	12
18	Expression of Embryonic Stem Cell Markers in Microcystic Lymphatic Malformation. Lymphatic Research and Biology, 2019, 17, 496-503.	0.5	9

#	Article	IF	CITATIONS
19	Expression of Cathepsins B, D, and G in WHO Grade I Meningioma. Frontiers in Surgery, 2019, 6, 6.	0.6	12
20	Expression of Components of the Renin-Angiotensin System by the Embryonic Stem Cell–Like Population within Keloid Lesions. Plastic and Reconstructive Surgery, 2019, 144, 372-384.	0.7	11
21	Embryonic Stem Cell-like Population within Venous Malformation Expresses the Renin–Angiotensin System. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2170.	0.3	8
22	Expression of Cathepsins B, D, and G by the Embryonic Stem Cell–Like Population within Human Keloid Tissues and Keloid-Derived Primary Cell Lines. Plastic and Reconstructive Surgery, 2019, 144, 1338-1349.	0.7	9
23	Cancer stem cells within moderately differentiated head and neck cutaneous squamous cell carcinoma express components of the renin-angiotensin system. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2019, 72, 1484-1493.	0.5	16
24	Circulating tumor stem cells and glioblastoma: A review. Journal of Clinical Neuroscience, 2019, 61, 5-9.	0.8	24
25	Expression of cancer stem cell markers in metastatic melanoma to the brain. Journal of Clinical Neuroscience, 2019, 60, 112-116.	0.8	24
26	Keloid-associated lymphoid tissues in keloid lesions express vitamin D receptor. International Journal of Clinical and Experimental Pathology, 2019, 12, 3027-3031.	0.5	2
27	Expression and Localization of Cathepsins B, D, and G in Dupuytren's Disease. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1686.	0.3	23
28	Cancer stem cells in colorectal cancer: a review. Journal of Clinical Pathology, 2018, 71, 110-116.	1.0	228
29	Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. Journal of Clinical Pathology, 2018, 71, 88-91.	1.0	146
30	Tumour stem cells in meningioma: A review. Journal of Clinical Neuroscience, 2018, 47, 66-71.	0.8	29
31	Expression of Embryonic Stem Cell Markers on the Microvessels of WHO Grade I Meningioma. Frontiers in Surgery, 2018, 5, 65.	0.6	15
32	The Role of Stem Cells in Dupuytren's Disease. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1777.	0.3	8
33	Expression and Localization of Cathepsins B, D and G in Cancer Stem Cells in Liver Metastasis From Colon Adenocarcinoma. Frontiers in Surgery, 2018, 5, 40.	0.6	25
34	Phosphorylated Forms of STAT1, STAT3 and STAT5 Are Expressed in Proliferating but Not Involuted Infantile Hemangioma. Frontiers in Surgery, 2018, 5, 31.	0.6	4
35	Embryonic Stem Cell-Like Population in Dupuytren's Disease Expresses Components of the Renin-Angiotensin System. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1422.	0.3	17
36	Neuropeptide Y receptor 1 is expressed by B and T lymphocytes and mast cells in infantile haemangiomas. Acta Paediatrica, International Journal of Paediatrics, 2017, 106, 292-297.	0.7	13

#	Article	IF	CITATIONS
37	The Identification of Three Cancer Stem Cell Subpopulations within Moderately Differentiated Lip Squamous Cell Carcinoma. Frontiers in Surgery, 2017, 4, 12.	0.6	31
38	Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma. Frontiers in Surgery, 2017, 4, 28.	0.6	37
39	Cancer Stem Cells in Moderately Differentiated Lip Squamous Cell Carcinoma Express Components of the Renin–Angiotensin System. Frontiers in Surgery, 2017, 4, 30.	0.6	24
40	Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma. Frontiers in Medicine, 2017, 4, 100.	1.2	32
41	Embryonic Stem Cell-Like Subpopulations in Venous Malformation. Frontiers in Medicine, 2017, 4, 162.	1.2	12
42	Cancer Stem Cells in Oral Cavity Squamous Cell Carcinoma: A Review. Frontiers in Oncology, 2017, 7, 112.	1.3	106
43	Characterization of Cancer Stem Cells in Colon Adenocarcinoma Metastasis to the Liver. Frontiers in Surgery, 2017, 4, 76.	0.6	31
44	Elevated Serum Levels of Alpha-Fetoprotein in Patients with Infantile Hemangioma Are Not Derived from within the Tumor. Frontiers in Surgery, 2016, 3, 5.	0.6	9
45	Cancer Stem Cell Hierarchy in Glioblastoma Multiforme. Frontiers in Surgery, 2016, 3, 21.	0.6	204
46	Expression of the Components of the Renin–Angiotensin System in Venous Malformation. Frontiers in Surgery, 2016, 3, 24.	0.6	18
47	Characterization of Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma. Frontiers in Surgery, 2016, 3, 46.	0.6	45
48	Cancer Stem Cells in Glioblastoma Multiforme. Frontiers in Surgery, 2016, 3, 48.	0.6	66
49	Glioblastoma Multiforme Cancer Stem Cells Express Components of the Renin–Angiotensin System. Frontiers in Surgery, 2016, 3, 51.	0.6	40
50	Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin–Angiotensin System. Frontiers in Surgery, 2016, 3, 52.	0.6	37
51	Expression of embryonic stem cell markers in keloid-associated lymphoid tissue. Journal of Clinical Pathology, 2016, 69, 643-646.	1.0	26
52	Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma express components of the renin–angiotensin system. Journal of Clinical Pathology, 2016, 69, 942-945.	1.0	40
53	Cancer stem cells in moderately differentiated oral tongue squamous cell carcinoma. Journal of Clinical Pathology, 2016, 69, 742-744.	1.0	39
54	Expression of embryonic stem cell markers in pyogenic granuloma. Journal of Cutaneous Pathology, 2016, 43, 1096-1101.	0.7	21

#	Article	IF	CITATIONS
55	Angiolymphoid hyperplasia with eosinophilia developing within a port wine stain. Journal of Cutaneous Pathology, 2016, 43, 53-56.	0.7	4
56	Embryonic Stem Cell–like Population in Dupuytren's Disease. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e1064.	0.3	17
57	PHACE syndrome – clinical features, aetiology and management. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, 145-153.	0.7	21
58	Does hypoxia play a role in infantile hemangioma?. Archives of Dermatological Research, 2016, 308, 219-227.	1.1	63
59	Infantile Hemangiomas Exhibit Neural Crest and Pericyte Markers. Annals of Plastic Surgery, 2015, 74, 383.	0.5	4
60	Finger soft tissue myoepithelioma: a rare entity. ANZ Journal of Surgery, 2015, 85, 883-884.	0.3	0
61	PHACE(S) Syndrome With Absent Intracranial Internal Carotid Artery and Anomalous Circle of Willis. Journal of Craniofacial Surgery, 2015, 26, e315-e317.	0.3	6
62	Expression of Cathepsins B, D, and G in Infantile Hemangioma. Frontiers in Surgery, 2015, 2, 26.	0.6	24
63	Characterisation of subpopulations of myeloid cells in infantile haemangioma. Journal of Clinical Pathology, 2015, 68, 571-574.	1.0	27
64	Characterisation of lymphocyte subpopulations in infantile haemangioma. Journal of Clinical Pathology, 2015, 68, 812-818.	1.0	20
65	Lowâ€dose propranolol regimen for infantile haemangioma. Journal of Paediatrics and Child Health, 2015, 51, 419-424.	0.4	42
66	Angiotensin II causes cellular proliferation in infantile haemangioma via angiotensin II receptor 2 activation. Journal of Clinical Pathology, 2015, 68, 346-350.	1.0	38
67	Biology of Infantile Hemangioma. Frontiers in Surgery, 2014, 1, 38.	0.6	86
68	Gold weight implantation and lateral tarsorrhaphy for upper eyelid paralysis. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, e49-e53.	0.7	13
69	Verrucous hemangioma expresses primitive markers. Journal of Cutaneous Pathology, 2013, 40, 391-396.	0.7	21
70	Mast cells in infantile haemangioma possess a primitive myeloid phenotype. Journal of Clinical Pathology, 2013, 66, 597-600.	1.0	20
71	Infantile haemangioma expresses embryonic stem cell markers. Journal of Clinical Pathology, 2012, 65, 394-398.	1.0	47
72	Spontaneously Reduced Isolated Orbital Roof Fracture. Journal of Craniofacial Surgery, 2012, 23, 1200.	0.3	5

#	Article	IF	CITATIONS
73	Reply to the letter to the Editor on "Low-dose propranolol for infantile haemangioma― Journal of Plastic, Reconstructive and Aesthetic Surgery, 2012, 65, 1124-1126.	0.5	0
74	Low-dose propranolol for infantile haemangioma. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2011, 64, 292-299.	0.5	107
75	Expression of components of the renin–angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2011, 64, 759-765.	0.5	150
76	Pharmacologic Therapies for Infantile Hemangioma: Is There a Rational Basis?. Plastic and Reconstructive Surgery, 2011, 128, 499-507.	0.7	51
77	Infantile haemangioma expresses tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL receptors, osteoprotegerin and receptor activator for nuclear factor ĐºB ligand (RANKL)â€. Histopathology, 2011, 59, 397-406.	1.6	6
78	A placental chorionic villous mesenchymal core cellular origin for infantile haemangioma. Journal of Clinical Pathology, 2011, 64, 870-874.	1.0	36
79	Mesenchymal stem cells in infantile haemangioma. Journal of Clinical Pathology, 2011, 64, 232-236.	1.0	34
80	Low-Dose Propranolol for Multiple Hepatic and Cutaneous Hemangiomas With Deranged Liver Function. Pediatrics, 2011, 127, e772-e776.	1.0	37
81	Primitive mesodermal cells with a neural crest stem cell phenotype predominate proliferating infantile haemangioma. Journal of Clinical Pathology, 2010, 63, 771-776.	1.0	50
82	Haemogenic endothelium in infantile haemangioma. Journal of Clinical Pathology, 2010, 63, 982-986.	1.0	54
83	Infantile Hemangioma: A Tumor Involving Hemogenic Endothelium with Erythropoetic Potential. Blood, 2010, 116, 4305-4305.	0.6	0
84	Thoracic splenosis: a treatment approach. Medical Journal of Australia, 2006, 184, 416-416.	0.8	2
85	Cancer stem cells in liver metastasis from colon adenocarcinoma express components of the renin-angiotensin system. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.5	10
86	Cancer stem cell subpopulations in metastatic melanoma to the brain express components of the renin-angiotensin system. Journal of Cancer Metastasis and Treatment, 0, 2019, .	0.5	8