

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475459/publications.pdf Version: 2024-02-01

XIANC W/U

#	Article	IF	CITATIONS
1	Hierarchical SnO ₂ Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications. ACS Applied Materials & Interfaces, 2014, 6, 2174-2184.	4.0	463
2	Core-shell structured Co 3 O 4 @NiCo 2 O 4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy, 2017, 31, 410-417.	8.2	330
3	Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices. Nano Energy, 2017, 42, 143-150.	8.2	221
4	Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm, 2011, 13, 3506.	1.3	220
5	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	5.2	203
6	Hybrid α-Fe 2 O 3 @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy, 2014, 10, 90-98.	8.2	198
7	Phase-controlled synthesis of polymorphic MnO ₂ structures for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 5722-5729.	5.2	176
8	Investigation on electrochemical behaviors of NiCo ₂ O ₄ battery-type supercapacitor electrodes: the role of an aqueous electrolyte. Inorganic Chemistry Frontiers, 2017, 4, 1642-1648.	3.0	172
9	Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. Journal of Alloys and Compounds, 2017, 724, 695-702.	2.8	150
10	Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nature Communications, 2022, 13, 1317.	5.8	141
11	Sulfurâ€Induced Interface Engineering of Hybrid NiCo ₂ O ₄ @NiMo ₂ \$ ₄ Structure for Overall Water Splitting and Flexible Hybrid Energy Storage. Advanced Materials Interfaces, 2019, 6, 1901308.	1.9	130
12	NiO nanosheet assembles for supercapacitor electrode materials. Progress in Natural Science: Materials International, 2016, 26, 271-275.	1.8	129
13	Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chemical Engineering Journal, 2014, 258, 203-209.	6.6	122
14	Mesoporous NiCo ₂ O ₄ nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorganic Chemistry Frontiers, 2018, 5, 835-843.	3.0	107
15	Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo ₂ O ₄ @NiWS Nanosheets. Crystal Growth and Design, 2019, 19, 1921-1929.	1.4	105
16	Facile synthesis of ultralong MnO ₂ nanowires as high performance supercapacitor electrodes and photocatalysts with enhanced photocatalytic activities. CrystEngComm, 2014, 16, 9999-10005.	1.3	103
17	Ultrathin NiO nanoflakes electrode materials for supercapacitors. Applied Surface Science, 2016, 360, 8-13.	3.1	103
18	Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chemical Engineering Journal, 2020, 392, 123651.	6.6	97

#	Article	IF	CITATIONS
	Enhanced electrochemical performance of hybrid SnO ₂ @MO _x (M = Ni, Co,) Tj ETQq1		<u> </u>
19	materials. Journal of Materials Chemistry A, 2015, 3, 3676-3682.	5.2	85
20	Hierarchical WO ₃ @SnO ₂ core–shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7367-7372.	5.2	84
21	NiCo ₂ O ₄ nanowire based flexible electrode materials for asymmetric supercapacitors. New Journal of Chemistry, 2018, 42, 7399-7406.	1.4	83
22	Hybrid MnO ₂ @NiCo ₂ O ₄ nanosheets for high performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1378-1385.	3.0	77
23	Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Materials Letters, 2018, 210, 354-357.	1.3	77
24	Hierarchical NiCo 2 O 4 nanowalls composed of ultrathin nanosheets as electrode materials for supercapacitor and Li ion battery applications. Materials Research Bulletin, 2017, 93, 303-309.	2.7	74
25	Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties. Nanoscale Research Letters, 2010, 5, 570-575.	3.1	71
26	Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application. Dalton Transactions, 2015, 44, 2409-2415.	1.6	65
27	NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Science China Materials, 2021, 64, 581-591.	3.5	64
28	Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure. Dalton Transactions, 2013, 42, 14178.	1.6	63
29	Dendritic α-Fe ₂ 0 ₃ hierarchical architectures for visible light driven photocatalysts. CrystEngComm, 2014, 16, 575-580.	1.3	57
30	Nanohybridization of Ni–Co–S Nanosheets with ZnCo ₂ O ₄ Nanowires as Supercapacitor Electrodes with Long Cycling Stabilities. ACS Applied Energy Materials, 2021, 4, 2637-2643.	2.5	57
31	Controlled assembly of Bi ₂ S ₃ architectures as Schottky diode, supercapacitor electrodes and highly efficient photocatalysts. RSC Advances, 2014, 4, 41636-41641.	1.7	56
32	Spinous α-Fe ₂ O ₃ hierarchical structures anchored on Ni foam for supercapacitor electrodes and visible light driven photocatalysts. Dalton Transactions, 2016, 45, 7094-7103.	1.6	56
33	Flexible Mn-decorated NiCo ₂ S ₄ core–shell nanowire arrays for a high performance hybrid supercapacitor electrode with a long cycle life. CrystEngComm, 2018, 20, 4735-4744.	1.3	53
34	Facile template-free synthesis and visible-light driven photocatalytic performances of dendritic CdS hierarchical structures. Dalton Transactions, 2013, 42, 4633.	1.6	52
35	Toward a high performance asymmetric hybrid capacitor by electrode optimization. Inorganic Chemistry Frontiers, 2019, 6, 2824-2831.	3.0	52
36	Realizing Superior Electrochemical Performance of Asymmetric Capacitors through Tailoring Electrode Architectures. ACS Applied Energy Materials, 2020, 3, 7004-7010.	2.5	52

#	Article	IF	CITATIONS
37	A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. Npj Flexible Electronics, 2021, 5, .	5.1	52
38	Enhanced Electrochemical Performance of Zn/VO _{<i>x</i>} Batteries by a Carbon-Encapsulation Strategy. ACS Applied Materials & Interfaces, 2022, 14, 11654-11662.	4.0	51
39	Solution Growth and Cathodoluminescence of Novel SnO2 Coreâ^'Shell Homogeneous Microspheres. Journal of Physical Chemistry C, 2010, 114, 8235-8240.	1.5	48
40	Engineering PPy decorated MnCo ₂ O ₄ urchins for quasi-solid-state hybrid capacitors. CrystEngComm, 2019, 21, 1600-1606.	1.3	48
41	General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Advances, 2013, 3, 12140.	1.7	47
42	Flexible heterostructured supercapacitor electrodes based on α-Fe ₂ O ₃ nanosheets with excellent electrochemical performances. Dalton Transactions, 2016, 45, 12862-12870.	1.6	45
43	Facile hydrothermal synthesis of novel ZnO nanocubes. Journal of Alloys and Compounds, 2010, 504, L1-L4.	2.8	44
44	SnO ₂ Core–Shell Microspheres with Excellent Photocatalytic Properties. Science of Advanced Materials, 2012, 4, 702-707.	0.1	44
45	Constructing High Efficiency CoZn _x Mn _{2–x} O ₄ Electrocatalyst by Regulating the Electronic Structure and Surface Reconstruction. Small, 2022, 18, e2107268.	5.2	43
46	Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance. Nano-Micro Letters, 2015, 7, 12-16.	14.4	42
47	3D Co3O4@MnO2 heterostructures grown on a flexible substrate and their applications in supercapacitor electrodes and photocatalysts. Dalton Transactions, 2016, 45, 16850-16858.	1.6	41
48	Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties. Nano-Micro Letters, 2012, 4, 45-51.	14.4	39
49	Hierarchical Porous SnO ₂ Microflowers Photocatalyst. Science of Advanced Materials, 2012, 4, 1127-1133.	0.1	39
50	Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process. Journal of Alloys and Compounds, 2009, 486, L13-L16.	2.8	38
51	Synthesis and electrochemical performance of NaV ₆ O ₁₅ microflowers for lithium and sodium ion batteries. RSC Advances, 2017, 7, 29481-29488.	1.7	38
52	α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin, 2018, 107, 391-396.	2.7	38
53	Hierarchical WO3 nanostructures assembled by nanosheets and their applications in wastewater purification. Journal of Alloys and Compounds, 2016, 689, 570-574.	2.8	37
54	Ni Foam Substrates Modified with a ZnCo ₂ O ₄ Nanowire-Coated Ni(OH) ₂ Nanosheet Electrode for Hybrid Capacitors and Electrocatalysts. ACS Applied Nano Materials, 2021, 4, 5461-5468.	2.4	37

#	Article	IF	CITATIONS
55	Facile synthesis of flexible WO3 nanofibers as supercapacitor electrodes. Materials Letters, 2017, 186, 94-97.	1.3	36
56	Self-Assembled Porous ZnS Nanospheres with High Photocatalytic Performance. Science of Advanced Materials, 2013, 5, 1329-1336.	0.1	36
57	Hetero MOFâ€onâ€MOFâ€derived carbon nanotube interconnected nitrogenâ€doped carbonâ€encapsulated FeNi/FeF ₂ for efficient oxygen evolution reaction. , 2022, 4, 924-938.		36
58	Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature. Materials Letters, 2010, 64, 602-604.	1.3	35
59	Solution synthesis and optimization of ZnO nanowindmills. Applied Surface Science, 2011, 257, 7432-7435.	3.1	34
60	Photocatalytic Degradation of Organic Dyes with Hierarchical Ag ₂ O/ZnO Heterostructures. Science of Advanced Materials, 2013, 5, 1364-1371.	0.1	34
61	Donut-shaped Co3O4 nanoflakes grown on nickel foam with enhanced supercapacitive performances. Applied Surface Science, 2016, 365, 240-244.	3.1	33
62	Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties. Journal of Colloid and Interface Science, 2015, 457, 345-352.	5.0	32
63	Synthesis of Ultra-Thin ZnO Nanosheets: Photocatalytic and Superhydrophilic Properties. Science of Advanced Materials, 2013, 5, 1052-1059.	0.1	32
64	Hierarchical WO3@MnWO4 core-shell structure for asymmetric supercapacitor with ultrahigh cycling performance at low temperature. Journal of Colloid and Interface Science, 2018, 531, 216-224.	5.0	31
65	Enhanced Zinc Ion Storage Capability of V ₂ O ₅ Electrode Materials with Hollow Interior Cavities. Batteries and Supercaps, 2021, 4, 1867-1873.	2.4	31
66	PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Metals, 2022, 41, 1195-1201.	3.6	31
67	Visible-light-driven photocatalytic properties of simply synthesized α-Iron(III)oxide nanourchins. Journal of Colloid and Interface Science, 2015, 451, 93-100.	5.0	30
68	Asymmetric pseudo-capacitors based on dendrite-like MnO ₂ nanostructures. CrystEngComm, 2019, 21, 3349-3355.	1.3	30
69	Selective epichlorohydrin-sensing performance of Ag nanoparticles decorated porous SnO ₂ architectures. CrystEngComm, 2014, 16, 110-115.	1.3	29
70	Manipulating the Electrocatalytic Performance of NiCoP Nanowires by V Doping Under Acidic and Basic Conditions for Hydrogen and Oxygen Evolution Reactions. ACS Applied Nano Materials, 2021, 4, 10791-10798.	2.4	29
71	Growth of dendritic SnO2 nanoarchitectures. Materials Chemistry and Physics, 2008, 112, 325-328.	2.0	28
72	Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery. Solid State Sciences, 2010, 12, 851-856.	1.5	28

#	Article	IF	CITATIONS
73	Aqueous phase approach to ZnO microspindles at low temperature. Journal of Alloys and Compounds, 2010, 501, 375-379.	2.8	28
74	Ultrathin γ-Al ₂ O ₃ nanofibers with large specific surface area and their enhanced thermal stability by Si-doping. RSC Advances, 2015, 5, 54053-54058.	1.7	28
75	Facile synthesis of SnO2 hollow microspheres composed of nanoparticles and their remarkable photocatalytic performance. Materials Research Bulletin, 2016, 74, 284-290.	2.7	28
76	Porous α-Fe2O3@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances. Nanomaterials, 2018, 8, 487.	1.9	27
77	Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Metals, 2022, 41, 2985-2991.	3.6	24
78	Hierarchical Semiconductor Oxide Photocatalyst: A Case of the SnO2 Microflower. Nano-Micro Letters, 2013, 5, 234-241.	14.4	23
79	Self assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. CrystEngComm, 2012, 14, 7759.	1.3	22
80	Dendritic CdS assemblies for removal of organic dye molecules. Dalton Transactions, 2014, 43, 4847-4853.	1.6	20
81	Enhanced electrochemical performances of ZnCo ₂ O ₄ @CoMoO ₄ core–shell structures with long cycling stabilities. Dalton Transactions, 2020, 49, 6242-6248.	1.6	20
82	MnCo ₂ O ₄ Nanosheet/NiCo ₂ S ₄ Nanowire Heterostructures as Cathode Materials for Capacitors. ACS Applied Nano Materials, 2021, 4, 2183-2189.	2.4	19
83	A flexible hybrid capacitor based an NiCo ₂ S ₄ nanowire electrode with an ultrahigh capacitance. Dalton Transactions, 2021, 50, 4045-4052.	1.6	19
84	Flexible CuCo2O4@Ni-Co-S hybrids as electrode materials for high-performance energy storage devices. Chinese Chemical Letters, 2023, 34, 107593.	4.8	19
85	Large scale synthesis of fishbone-like ZnS nanostructures using ITO glass as the substrate. Journal of Alloys and Compounds, 2009, 482, L32-L35.	2.8	18
86	Electrochemical energy storage performance of heterostructured SnO2@MnO2 nanoflakes. Ceramics International, 2017, 43, 1688-1694.	2.3	18
87	Hierarchical Co ₃ O ₄ @Co ₉ S ₈ nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC Advances, 2018, 8, 28172-28178.	1.7	18
88	ZnO microrod arrays grown on a curved sphere surface and their optical properties. CrystEngComm, 2011, 13, 6114.	1.3	17
89	Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit. Solid State Sciences, 2011, 13, 641-646.	1.5	17
90	Controlled synthesis and photocatalytic properties of three dimensional hierarchical ZnO microflowers. Materials Express, 2013, 3, 256-264.	0.2	17

#	Article	IF	CITATIONS
91	Facile synthesis of hollow ZnS nanospheres for environmental remediation. Materials Letters, 2015, 160, 271-274.	1.3	17
92	Hierarchical SnO2 nanostructures as high efficient photocatalysts for the degradation of organic dyes. Journal of Sol-Gel Science and Technology, 2017, 84, 316-322.	1.1	17
93	Increased crystallinity of RuSe ₂ /carbon nanotubes for enhanced electrochemical hydrogen generation performance. Nanoscale, 2022, 14, 790-796.	2.8	17
94	Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries. Nanomaterials, 2022, 12, 1438.	1.9	17
95	Mixed transition metal oxide nanowire arrays enabling hybrid capacitor performance enhancement. CrystEngComm, 2019, 21, 5789-5796.	1.3	16
96	Aqueous zinc ion batteries based on sodium vanadate electrode materials with long lifespan and high energy density. Materials Advances, 2022, 3, 604-610.	2.6	16
97	Controlled Growth and Cathodoluminescence Property of ZnS nanobelts with Large Aspect Ratio. Nano-Micro Letters, 2010, 2, 272-276.	14.4	15
98	Vulcanization induced composition regulation of NiO electrode materials with improved electrochemical performances. Journal of Colloid and Interface Science, 2019, 554, 705-710.	5.0	15
99	Enhanced Electrochemical Performance of Co ₂ NiO ₄ /Ti ₃ C ₂ T _x Structures through Coupled Synergistic Effects. ChemistrySelect, 2019, 4, 12886-12890.	0.7	15
100	Pt/Mn ₃ O ₄ cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chemical Communications, 2022, 58, 2371-2374.	2.2	15
101	Hydrothermal synthesis of highly symmetric 26â€facet Cu ₂ O polyhedra. Crystal Research and Technology, 2011, 46, 300-304.	0.6	14
102	Cuprous Chloride Nanocubes Grown on Copper Foil for Pseudocapacitor Electrodes. Nano-Micro Letters, 2014, 6, 340-346.	14.4	14
103	Gas Phase Growth of Wurtzite ZnS Nanobelts on a Large Scale. Journal of Nanomaterials, 2013, 2013, 1-4.	1.5	13
104	Nanosheet based SnO2 assembles grown on a flexible substrate. Applied Surface Science, 2014, 305, 626-629.	3.1	12
105	Flexible α-Fe ₂ O ₃ nanorod electrode materials for sodium-ion batteries with excellent cycle performance. Functional Materials Letters, 2018, 11, 1840002.	0.7	12
106	Reduced Graphene Oxide-BiVO ₄ Composite for Enhanced Photoelectrochemical Cell and Photocatalysis. Science of Advanced Materials, 2013, 5, 1485-1492.	0.1	12
107	A co-templated approach to hierarchically mesoporous–macroporous bioactive glasses (MMBG) scaffolds for bone tissue regeneration. Journal of Sol-Gel Science and Technology, 2012, 62, 170-176.	1.1	11
108	SnO ₂ Core–Shell Microspheres as the Superior Anode Materials for Li-Ion Batteries. Science of Advanced Materials, 2014, 6, 1184-1187.	0.1	11

#	Article	IF	CITATIONS
109	Low temperature growth and properties of ZnO nanorod arrays. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 035006.	0.7	10
110	One-step synthesis of crystalline anatase TiO2 nanospindles and investigation on their photocatalytic performance. Materials Letters, 2013, 100, 198-200.	1.3	10
111	Ultra-long germanium oxide nanowires: Structures and optical properties. Journal of Alloys and Compounds, 2014, 606, 149-153.	2.8	10
112	High Rate Supercapacitor Electrodes Based <i>α</i> -Fe ₂ O ₃ Nanosheet Networks Anchored on a Nickel Foam. Science of Advanced Materials, 2015, 7, 1395-1399.	0.1	10
113	Electronic and lattice strain dual tailoring for boosting Pd electrocatalysis in oxygen reduction reaction. IScience, 2021, 24, 103332.	1.9	10
114	High efficient ZnO nanowalnuts photocatalyst: A case study. Materials Research Bulletin, 2014, 59, 98-103.	2.7	9
115	A facile synthetic protocol of α-Fe ₂ O ₃ @FeS ₂ nanocrystals for advanced electrochemical capacitors. CrystEngComm, 2021, 23, 2432-2438.	1.3	9
116	Mesoporous Co–Mo–S nanosheet networks as cathode materials for flexible electrochemical capacitors. CrystEngComm, 2021, 23, 7671-7678.	1.3	9
117	Solution growth and optical property of ZnS/ZnO microspheres. Micro and Nano Letters, 2011, 6, 633.	0.6	8
118	Mixed surfactants-directed the mesoporous silica materials with various morphologies and structures. Journal of Solid State Chemistry, 2011, 184, 1415-1420.	1.4	8
119	ZnO microbowls grown on an ITO glass substrate through thermal evaporation. Chinese Physics B, 2012, 21, 098104.	0.7	7
120	Assembling SnO Nanosheets into Microhydrangeas: Gas Phase Synthesis and Their Optical Property. Nano-Micro Letters, 2012, 4, 215-219.	14.4	7
121	Visible Light Driven <i>α</i> -Fe ₂ O ₃ Nanorod Photocatalyst. Journal of Nanoscience and Nanotechnology, 2014, 14, 7224-7227.	0.9	7
122	Ammonium vanadate cathode materials with enhanced Zn storage by the optimization of electrolytes. CrystEngComm, 2022, 24, 1387-1393.	1.3	7
123	Synthesis of Vertically Aligned Dense ZnO Nanowires. Journal of Nanomaterials, 2011, 2011, 1-5.	1.5	6
124	ZnO Film Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	6
125	Synthesis and Electrochemical Properties of Manganese Vanadate Nanorods as an Intercalation Anode for Lithium-Ion Batteries. Science of Advanced Materials, 2016, 8, 1309-1313.	0.1	6
126	Approaching high performance Ni(Co) molybdate electrode materials for flexible hybrid devices. RSC Advances, 2022, 12, 14858-14864.	1.7	6

#	Article	IF	CITATIONS
127	Ammonium vanadate electrode materials with stable layered structures for rechargeable zinc ion batteries. CrystEngComm, 2022, 24, 5421-5427.	1.3	6
128	ZnS nanorods with tripod-like and tetrapod-like legs. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 035005.	0.7	5
129	Chinese ink-facilitated fabrication of paper-based composites as electrodes for supercapacitors. International Journal of Smart and Nano Materials, 2021, 12, 351-374.	2.0	5
130	Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties. , 2012, 4, 45.		5
131	Stable and Efficient Pb–Ni Binary Metal Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 17112-17119.	3.2	5
132	Growth of Thin Sheet Assembled Hierarchical ZnO Nanostructures. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	4
133	Facile approach to ZnO nanorods by directly etching zinc substrate. Micro and Nano Letters, 2012, 7, 485.	0.6	4
134	Facile Synthesis of Template-Induced SnO2Nanotubes. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	4
135	Hydrothermal Synthesis and Photocatalytic Performance of Uniform <i>α</i> -Fe ₂ O ₃ Nanocubes. Journal of Nanoscience and Nanotechnology, 2014, 14, 7211-7214.	0.9	4
136	Facile Synthesis of Ag ₂ O Nanoparticles Decorated ZnO Assembles with Excellent Photocatalytic Performances. Journal of Nanoscience and Nanotechnology, 2016, 16, 8538-8543.	0.9	4
137	Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Frontiers of Optoelectronics, 2022, 15, .	1.9	4
138	Hybrid Ag2O/ZnO Heterostructures. Journal of Nanomaterials, 2013, 2013, 1-5.	1.5	3
139	Metal Oxide Heterostructures for Water Purification. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	3
140	Synthesis and Characterization of Flower-Like ZnO Microspheres Assembled by Nanosheets. Advanced Science Letters, 2011, 4, 3608-3612.	0.2	3
141	Self-Assembly of Semiconductor Metal Oxide Nanostructures. Journal of Nanomaterials, 2013, 2013, 1-2.	1.5	2
142	Removal of Congo Red Dye Molecules by MnO ₂ Nanorods. Journal of Nanoscience and Nanotechnology, 2014, 14, 7157-7160.	0.9	2
143	Semiconductor Nanomaterials for Energy Conversion and Storage. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	2
144	Facile Hydrothermal Approach to ZnO Nanorods at Mild Temperature. Journal of Nanomaterials, 2013, 2013, 1-5.	1.5	1

#	Article	IF	CITATIONS
145	Nanosheet-Assembled ZnO Microflower Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	1
146	Reaction temperatureâ€dependent growth of ZnS nanomaterials. Micro and Nano Letters, 2018, 13, 157-159.	0.6	1
147	Mushroom-like ZnO Nanostructures Grown on Tungsten Substrate. Current Nanoscience, 2014, 10, 308-311.	0.7	1
148	Effective Volatile Organic Compounds Gas Sensor Based on AgCl–SnO ₂ Nanocomposites. Nanoscience and Nanotechnology Letters, 2013, 5, 1278-1282.	0.4	0
149	Largeâ€ s cale fabrication and the optical properties of towerâ€ i ke zinc oxide structures. Micro and Nano Letters, 2014, 9, 475-477.	0.6	0
150	Synthesis and Improved Thermal Stability of High Surface Area Î ³ -Al2O3 Nanofibers Modified by Lanthanum. Science of Advanced Materials, 2016, 8, 1242-1247.	0.1	0
151	<i>A Special Section on</i> Hierarchically Nanostructured Materials for Environmental and Energy Applications, Science of Advanced Materials, 2016, 8, 1227-1230	0.1	0