Sergii O Solopan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475341/publications.pdf

Version: 2024-02-01

840776 888059 25 284 11 17 citations g-index h-index papers 25 25 25 303 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low-temperature ferromagnetic resonance in bare and SiO ₂ coated La _{0.775} Sr _{0.225} MnO ₃ nanoparticles. Low Temperature Physics, 2022, 48, 330-335.	0.6	O
2	Analysis of low-temperature FMR spectra of Fe3O4 and ZnFe2O4 nanoparticles synthesized using organic molecules. Low Temperature Physics, 2021, 47, 220-227.	0.6	4
3	Structural Stability of Dispersions of Magnetic Nanoparticles in Aqueous Solutions of Polysorbate-80. Journal of Surface Investigation, 2021, 15, 781-786.	0.5	1
4	FEATURES OF PHASE TRANSFORMATIONS IN THE SYNTHESIS OF COMPLEX LITHIUM-CONDUCTING OXIDE MATERIALS. Ukrainian Chemistry Journal, 2021, 87, 14-34.	0.5	0
5	Magnetic Properties of Fe3O4/CoFe2O4 Composite Nanoparticles with Core/Shell Architecture. Ukrainian Journal of Physics, 2020, 65, 904.	0.2	1
6	Critical behavior of ensembles of superparamagnetic nanoparticles with dispersions of magnetic parameters. Journal of Physics Condensed Matter, 2019, 31, 375801.	1.8	11
7	Synthesis of Ferromagnetic La1-xSrxMnO3 Nanoparticles by Precipitation in the Reversed Microemulsions. , $2019, \ldots$		0
8	SYNTHESIS OF NANOSCALED MAGNETIC MATERIALS ON THE BASIS OF OXIDE SYSTEMS AND MANUFACTURING OF NON-RECIPROCAL COMPOSITE ELEMENTS BASED ON THEM. Ukrainian Chemical Journal, 2019, 85, 16-23.	0.3	0
9	Effect of Synthesis Method of La1 Ⱂ xSrxMnO3 Manganite Nanoparticles on Their Properties. Nanoscale Research Letters, 2018, 13, 13.	5.7	18
10	Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles. Nanoscale Research Letters, 2018, 13, 67.	5.7	20
11	Structural Aspects of Fe3O4/CoFe2O4 Magnetic Nanoparticles According to X-Ray and Neutron Scattering. Journal of Surface Investigation, 2018, 12, 737-743.	0.5	8
12	Lanthanum-strontium manganites for magnetic nanohyperthermia: Fine tuning of parameters by substitutions in lanthanum sublattice. Journal of Alloys and Compounds, 2017, 702, 31-37.	5.5	21
13	Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles. Nanoscale Research Letters, 2017, 12, 100.	5.7	11
14	Features of the magnetic state of ensembles of nanoparticles of substituted manganites: Experiment and model calculations. Low Temperature Physics, 2017, 43, 570-577.	0.6	4
15	Synthesis and comparative characteristics of biological activities of (La, Sr)MnO3 and Fe3O4 nanoparticles. European Journal of Nanomedicine, 2017, 9, .	0.6	8
16	Interplay between superparamagnetic and blocked behavior in an ensemble of lanthanum–strontium manganite nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 27015-27024.	2.8	16
17	Synthesis of Barium Cuprate by Secondary Induction Heating and its Electrical Properties. Powder Metallurgy and Metal Ceramics, 2016, 55, 347-354.	0.8	7
18	Synthesis of ferromagnetic La1 \hat{a} °x Sr x MnO3 nanoparticles by precipitation from diethylene glycol solution and their properties. Journal of Advanced Ceramics, 2016, 5, 197-203.	17.4	5

#	Article	IF	CITATION
19	Lithium La _{0.57} Li _{0.33} TiO ₃ Perovskite and Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄₃ Sub>Li-NASICON Supported Thick Films Electrolytes Prepared by Tape Casting Method. Journal of the Electrochemical Society, 2016, 163, A1653-A1659.	2.9	30
20	Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia. Nanoscale Research Letters, 2016, 11, 24.	5 . 7	32
21	Magnetic Properties and AC Losses in AFe ₂ O ₄ (A = Mn, Co, Ni, Zn) Nanoparticles Synthesized from Nonaqueous Solution. Journal of Chemistry, 2015, 2015, 1-9.	1.9	27
22	Mechanisms of AC losses in magnetic fluids based on substituted manganites. Physical Chemistry Chemical Physics, 2015, 17, 18087-18097.	2.8	35
23	Nanoparticles of spinel and perovskite ferromagnets and prospects for their application in medicine. AIP Conference Proceedings, 2014, , .	0.4	12
24	Synthesis and properties of AFe2O4 (A = Mn, Fe, Co, Ni, Zn) nanoparticles produced by deposition from diethylene glycol solution. Russian Journal of Inorganic Chemistry, 2013, 58, 901-905.	1.3	12
25	AC Field Threshold Effect as a Key Factor towards the Efficient Heating of Fluids with NaFeO ₂ Magnetic Nanoparticles. Particle and Particle Systems Characterization, 0, , 2200095.	2.3	1