
Marleny D A Saldaña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microencapsulation of flax oil with zein using spray and freeze drying. LWT - Food Science and Technology, 2011, 44, 1880-1887.	5.2	238
2	Subcritical water extraction of phenolic compounds from potato peel. Food Research International, 2011, 44, 2452-2458.	6.2	232
3	Extraction of Purine Alkaloids from Mat \tilde{A} © (llexparaguariensis)Using Supercritical CO2. Journal of Agricultural and Food Chemistry, 1999, 47, 3804-3808.	5.2	119
4	Extraction of Methylxanthines from Guaraná Seeds, Maté Leaves, and Cocoa Beans Using Supercritical Carbon Dioxide and Ethanol. Journal of Agricultural and Food Chemistry, 2002, 50, 4820-4826.	5.2	93
5	Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying. Journal of Supercritical Fluids, 2017, 127, 137-145.	3.2	74
6	Chemical Reactions in Food Systems at High Hydrostatic Pressure. Food Engineering Reviews, 2014, 6, 105-127.	5.9	73
7	Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends in Food Science and Technology, 2020, 97, 381-390.	15.1	62
8	Comparison of the solubility of β-carotene in supercritical CO2 based on a binary and a multicomponent complex system. Journal of Supercritical Fluids, 2006, 37, 342-349.	3.2	61
9	Barley β-glucan aerogels as a carrier for flax oil via supercritical CO2. Journal of Food Engineering, 2012, 111, 625-631.	5.2	56
10	Optimization of phytochemicals production from potato peel using subcritical water: Experimental and dynamic modeling. Journal of Supercritical Fluids, 2014, 90, 8-17.	3.2	56
11	Development of antimicrobial films based on cassava starch, chitosan and gallic acid using subcritical water technology. Journal of Supercritical Fluids, 2018, 137, 101-110.	3.2	56
12	Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrasonics Sonochemistry, 2020, 63, 104942.	8.2	51
13	Barley beta-glucan aerogels via supercritical CO2 drying. Food Research International, 2012, 48, 442-448.	6.2	44
14	Pressurized fluid systems: Phytochemical production from biomass. Journal of Supercritical Fluids, 2015, 96, 228-244.	3.2	44
15	Use of potato by-products and gallic acid for development of bioactive film packaging by subcritical water technology. Journal of Supercritical Fluids, 2019, 143, 97-106.	3.2	44
16	Hydrolysis of sweet blue lupin hull using subcritical water technology. Bioresource Technology, 2015, 194, 75-82.	9.6	42
17	Reduction in the cholesterol content of butter oil using supercritical ethane extraction and adsorption on alumina. Journal of Supercritical Fluids, 2000, 16, 225-233.	3.2	40
18	Phase Equilibrium Measurements of Sacha Inchi Oil (<i>Plukenetia volubilis</i>) and CO ₂ at High Pressures. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1263-1269.	1.9	39

#	Article	IF	CITATIONS
19	Effect of pressure-assisted thermal sterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk. Innovative Food Science and Emerging Technologies, 2012, 16, 291-297.	5.6	38
20	Antimicrobial activity of bioactive starch packaging films against Listeria monocytogenes and reconstituted meat microbiota on ham. International Journal of Food Microbiology, 2019, 305, 108253.	4.7	37
21	Use of subcritical water technology to develop cassava starch/chitosan/gallic acid bioactive films reinforced with cellulose nanofibers from canola straw. Journal of Supercritical Fluids, 2019, 148, 55-65.	3.2	36
22	Determination of vapor pressure and solubility correlation of phenolic compounds in supercritical CO2. Journal of Supercritical Fluids, 2007, 40, 7-19.	3.2	33
23	High-intensity ultrasound-assisted formation of cellulose nanofiber scaffold with low and high lignin content and their cytocompatibility with gingival fibroblast cells. Ultrasonics Sonochemistry, 2020, 64, 104759.	8.2	32
24	Solubility and physical properties of sugars in pressurized water. Journal of Chemical Thermodynamics, 2012, 55, 115-123.	2.0	30
25	Pressurized aqueous ethanol extraction of β-glucans and phenolic compounds from waxy barley. Food Research International, 2015, 75, 252-259.	6.2	29
26	Clove essential oil emulsion-filled cellulose nanofiber hydrogel produced by high-intensity ultrasound technology for tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 104845.	8.2	29
27	Enzymatic synthesis of phenolic lipids using flaxseed oil and ferulic acid in supercritical carbon dioxide media. Journal of Supercritical Fluids, 2012, 72, 255-262.	3.2	27
28	Kinetics of non-isothermal oxidation of anhydrous milk fat rich in conjugated linoleic acid using differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2012, 107, 973-981.	3.6	27
29	Flax mucilage and barley beta-glucan aerogels obtained using supercritical carbon dioxide: Application as flax lignan carriers. Innovative Food Science and Emerging Technologies, 2015, 28, 40-46.	5.6	27
30	High-intensity ultrasound-assisted recovery of cinnamyl alcohol glycosides from Rhodiola rosea roots: Effect of probe diameter on the ultrasound energy performance for the extraction of bioactive compounds. Food and Bioproducts Processing, 2020, 122, 245-253.	3.6	27
31	Green ultra-high pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. Innovative Food Science and Emerging Technologies, 2020, 66, 102532.	5.6	26
32	Pressurized fluid treatment of barley and canola straws to obtain carbohydrates and phenolics. Journal of Supercritical Fluids, 2018, 141, 12-20.	3.2	24
33	Impregnation of flax oil in pregelatinized corn starch using supercritical CO2. Journal of Supercritical Fluids, 2012, 61, 221-228.	3.2	23
34	Inactivation of peroxidase and polyphenoloxidase in coconut water using pressure-assisted thermal processing. Innovative Food Science and Emerging Technologies, 2018, 49, 41-50.	5.6	23
35	Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Research International, 2014, 62, 169-176.	6.2	22
36	Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw. Journal of Polymers and the Environment, 2018, 26, 2773-2781.	5.0	22

Marleny D A Saldaña

#	Article	IF	CITATIONS
37	Hydrolysis of cassava starch, chitosan and their mixtures in pressurized hot water media. Journal of Supercritical Fluids, 2019, 147, 293-301.	3.2	22
38	Relevance of ions in pressurized fluid extraction of carbohydrates and phenolics from barley hull. Journal of Supercritical Fluids, 2014, 93, 27-37.	3.2	21
39	Supercritical anti-solvent process as an alternative technology for vitamin complex encapsulation using zein as wall material: Technical-economic evaluation. Journal of Supercritical Fluids, 2020, 159, 104499.	3.2	21
40	Ultrasound processing of rutin in food-grade solvents: Derivative compounds, antioxidant activities and optical rotation. Food Chemistry, 2021, 344, 128629.	8.2	20
41	Enzymatic hydrolysis of conjugated linoleic acid-enriched anhydrous milk fat in supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 66, 198-206.	3.2	18
42	Use of high and ultra-high pressure based-processes for the effective recovery of bioactive compounds from Nannochloropsis oceanica microalgae. Journal of Supercritical Fluids, 2021, 167, 105039.	3.2	18
43	Optimization of artemisinin extraction from <i>Artemisia annua</i> L. with supercritical carbon dioxide + ethanol using response surface methodology. Electrophoresis, 2018, 39, 1926-1933.	2.4	17
44	Mechanism, kinetics, and physicochemical properties of ultrasound-produced emulsions stabilized by lentil protein: a non-dairy alternative in food systems. European Food Research and Technology, 2022, 248, 185-196.	3.3	16
45	Ultrasound-assisted production of emulsion-filled pectin hydrogels to encapsulate vitamin complex: Impact of the addition of xylooligosaccharides, ascorbic acid and supercritical CO2 drying. Innovative Food Science and Emerging Technologies, 2022, 76, 102907.	5.6	15
46	Recovery, encapsulation and stabilization of bioactives from food residues using high pressure techniques. Current Opinion in Food Science, 2015, 5, 76-85.	8.0	14
47	High-pressure and temperature effects on the inactivation of Bacillus amyloliquefaciens, alkaline phosphatase and storage stability of conjugated linoleic acid in milk. Innovative Food Science and Emerging Technologies, 2014, 26, 59-66.	5.6	13
48	Sequential treatment with pressurized fluid processing and ultrasonication for biorefinery of canola straw towards lignocellulosic nanofiber production. Industrial Crops and Products, 2019, 139, 111521.	5.2	12
49	The effect of different pressurized fluids on the extraction of anthocyanins and total phenolics from cranberry pomace. Journal of Supercritical Fluids, 2021, 175, 105279.	3.2	12
50	Oxidative stability of ultra high temperature milk enriched in conjugated linoleic acid and trans-vaccenic acid. International Dairy Journal, 2015, 43, 70-77.	3.0	10
51	Barley starch behavior in the presence of rutin under subcritical water conditions. Food Hydrocolloids, 2020, 100, 105421.	10.7	10
52	Production of pea hull soluble fiber-derived oligosaccharides using subcritical water with carboxylic acids. Journal of Supercritical Fluids, 2021, 178, 105349.	3.2	10
53	Phase behaviour of sesame (<i>Sesamum indicum L</i> .) seed oil using supercritical CO ₂ . Canadian Journal of Chemical Engineering, 2016, 94, 310-314.	1.7	9
54	Nanogels of poly-N-isopropylacrylamide, poly-N,N-diethylacrylamide and acrylic acid for controlled release of thymol. Journal of Polymer Research, 2018, 25, 1.	2.4	9

#	Article	IF	CITATIONS
55	Multi-responsive poly N-isopropylacrylamide/poly N-tert-butylacrylamide nanocomposite hydrogel with the ability to be adsorbed on the chitosan film as an active antibacterial material. International Journal of Biological Macromolecules, 2022, 208, 1019-1028.	7.5	9
56	Optimization of Enzymatic Hydrolysis of Sacha Inchi Oil using Conventional and Supercritical Carbon Dioxide Processes. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 731-742.	1.9	8
57	Obtaining a hydrolyzed milk fat fraction enriched in conjugated linoleic acid and trans-vaccenic acid. International Dairy Journal, 2014, 36, 29-37.	3.0	8
58	Kinetics of lactulose formation in milk treated with pressure-assisted thermal processing. Innovative Food Science and Emerging Technologies, 2015, 28, 22-30.	5.6	8
59	Xylooligosaccharides and their chemical stability under high-pressure processing combined with heat treatment. Food Hydrocolloids, 2022, 124, 107167.	10.7	8
60	Retention of bioactive lipids in heated milk: Experimental and modelling. Food and Bioproducts Processing, 2015, 94, 290-296.	3.6	7
61	Ultrasound-assisted modification of rutin to nanocrystals and its application in barley starch pyrodextrinization. Food Chemistry, 2021, 344, 128626.	8.2	7
62	Carboxylic acid-catalysed hydrolysis of polygalacturonic acid in subcritical water media. Journal of Supercritical Fluids, 2021, 169, 105103.	3.2	7
63	Carboxylic acid-catalyzed hydrolysis of rhamnogalacturonan in subcritical water media. Journal of Supercritical Fluids, 2021, 175, 105268.	3.2	5
64	Advances and Perspectives of Supercritical Fluid Technology. Journal of Chemistry, 2013, 2013, 1-3.	1.9	4
65	The Effect of Rutin on Starch Hydrogels/Aerogels Made from Electrolyzed Barley Flour. Starch/Staerke, 2021, 73, 2000099.	2.1	4
66	Combined Effect of Pressure-Assisted Thermal Processing and Antioxidants on the Retention of Conjugated Linoleic Acid in Milk. Foods, 2015, 4, 65-79.	4.3	2
67	Emulsifying properties of quail egg white proteins in different vegetable oil emulsions. Acta Scientiarum - Technology, 2020, 43, e50067.	0.4	2