
Pachaiyappan Rajamalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity. Journal of Materials Chemistry C, 2022, 10, 4886-4893.	5.5	12
2	Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. Journal of Materials Chemistry C, 2022, 10, 4646-4667.	5.5	20
3	Planar and Rigid Pyrazineâ€Based TADF Emitter for Deep Blue Bright Organic Lightâ€Emitting Diodes. European Journal of Organic Chemistry, 2021, 2021, 2285-2293.	2.4	17
4	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie - International Edition, 2021, 60, 12066-12073.	13.8	32
5	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie, 2021, 133, 12173-12180.	2.0	4
6	Multichromophore Molecular Design for Thermally Activated Delayed-Fluorescence Emitters with Near-Unity Photoluminescence Quantum Yields. Journal of Organic Chemistry, 2021, 86, 11531-11544.	3.2	5
7	Substitution Effects on a New Pyridylbenzimidazole Acceptor for Thermally Activated Delayed Fluorescence and Their Use in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100846.	7.3	6
8	High performance non-doped green organic light emitting diodes <i>via</i> delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 15583-15590.	5.5	5
9	Ultrathin non-doped thermally activated delayed fluorescence emitting layer for highly efficient OLEDs. Chemical Communications, 2021, 57, 13728-13731.	4.1	7
10	Bipyridineâ€Containing Host Materials for High Performance Yellow Thermally Activated Delayed Fluorescenceâ€Based Organic Light Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Optical Materials, 2020, 8, 1901283.	7.3	18
11	Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy. Advanced Optical Materials, 2020, 8, 1901627.	7.3	182
12	Highly Fluorescent Emitters Based on Triphenylamineâ€ï€â€Triazine (Dâ€ï€â€A) System: Effect of Extended Conjugation on Singletâ€Triplet Energy Gap. Asian Journal of Organic Chemistry, 2020, 9, 1277-1285.	2.7	9
13	Use of Pyrimidine and Pyrazine Bridges as a Design Strategy To Improve the Performance of Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 45171-45179.	8.0	58
14	Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6664-6671.	5.5	39
15	Quinolinylmethanone-Based Thermally Activated Delayed Fluorescence Emitters and the Application in OLEDs: Effect of Intramolecular H-Bonding. ACS Applied Materials & Interfaces, 2019, 11, 17128-17133.	8.0	30
16	Molecular Design Strategy for a Two-Component Gel Based on a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Energy Materials, 2018, 1, 649-654.	5.1	15
17	Marigold Flowerâ€Like Assemblies of Phosphorescent Iridium–Silver Coordination Polymers. Macromolecular Rapid Communications, 2018, 39, e1800501.	3.9	2
18	Pyridine-functionalized carbazole donor and benzophenone acceptor design for thermally activated delayed fluorescence emitters in blue organic light-emitting diodes. Journal of Photonics for Energy, 2018 8 1	1.3	10

#	Article	IF	CITATIONS
19	Thermally activated delayed fluorescence emitters with a m,m-di-tert-butyl-carbazolyl benzoylpyridine core achieving extremely high blue electroluminescence efficiencies. Journal of Materials Chemistry C, 2017, 5, 2919-2926.	5.5	48
20	New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. Journal of the American Chemical Society, 2017, 139, 10948-10951.	13.7	361
21	Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobaltâ€Catalyzed Câ^'H Activation and Intramolecular Nucleophilic Addition. Angewandte Chemie - International Edition, 2016, 55, 4308-4311.	13.8	148
22	Rücktitelbild: Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobalt atalyzed Câ~'H Activation and Intramolecular Nucleophilic Addition (Angew. Chem.) Tj ETQq0	0 0. œBT /	Oværlock 10
23	Palladium-Catalyzed C–H Activation and Cyclization of Anilides with 2-lodoacetates and 2-lodobenzoates: An Efficient Method toward Oxindoles and Phenanthridones. Synthesis, 2016, 48, 1872-1879.	2.3	15
24	A Method for Reducing the Singlet–Triplet Energy Gaps of TADF Materials for Improving the Blue OLED Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 27026-27034.	8.0	87
25	Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobaltâ€Catalyzed Câ~'H Activation and Intramolecular Nucleophilic Addition. Angewandte Chemie, 2016, 128, 4380-4383.	2.0	36
26	A concise synthesis of quinolinium, and biquinolinium salts and biquinolines from benzylic azides and alkenes promoted by copper(<scp>ii</scp>) species. RSC Advances, 2016, 6, 63390-63397.	3.6	9
27	A thermally activated delayed blue fluorescent emitter with reversible externally tunable emission. Journal of Materials Chemistry C, 2016, 4, 900-904.	5.5	52
28	A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 2016, 138, 628-634.	13.7	365
29	<i>m</i> â€Indolocarbazole Derivative as a Universal Host Material for RGB and White Phosphorescent OLEDs. Advanced Functional Materials, 2015, 25, 5548-5556.	14.9	111
30	Rhodium(III) atalyzed [4+1] Annulation of Aromatic and Vinylic Carboxylic Acids with Allenes: An Efficient Method Towards Vinyl‧ubstituted Phthalides and 2â€Furanones. Chemistry - A European Journal, 2015, 21, 9198-9203.	3.3	81
31	Bromo induced reversible distinct color switching of a structurally simple donor–acceptor molecule by vapo, piezo and thermal stimuli. Journal of Materials Chemistry C, 2015, 3, 3329-3335.	5.5	47
32	A Universal Electron-Transporting/Exciton-Blocking Material for Blue, Green, and Red Phosphorescent Organic Light-Emitting Diodes (OLEDs). ACS Applied Materials & Interfaces, 2015, 7, 10466-10474.	8.0	51
33	A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 1491-1496.	5.5	61
34	Palladium-Catalyzed Dehydrogenative β-Arylation of Simple Saturated Carbonyls by Aryl Halides. ACS Catalysis, 2014, 4, 4485-4489.	11.2	40
35	Metal induced gelation from pyridine cored poly(aryl ether) dendrons with in situ synthesis and stabilization of hybrid hydrogel composites. Chemical Communications, 2014, 50, 11023-11025.	4.1	41
36	Highly efficient orange and deep-red organic light emitting diodes with long operational lifetimes using carbazole–quinoline based bipolar host materials. Journal of Materials Chemistry C, 2014, 2, 6183-6191.	5.5	79

#	Article	IF	CITATIONS
37	Synthesis of Substituted Quinolines by Iron(III)â€Catalyzed Threeâ€Component Coupling Reaction of Aldehydes, Amines, and Styrenes. Asian Journal of Organic Chemistry, 2014, 3, 303-308.	2.7	18
38	Glucose-cored poly(aryl ether) dendron based low molecular weight gels: pH controlled morphology and hybrid hydrogel formation. Chemical Communications, 2013, 49, 6758.	4.1	26
39	Supramolecular design for two-component hydrogels with intrinsic emission in the visible region. Chemical Communications, 2013, 49, 1744.	4.1	32
40	Tunable Morphology and Mesophase Formation by Naphthalene-Containing Poly(aryl ether) Dendron-Based Low-Molecular-Weight Fluorescent Gels. Langmuir, 2013, 29, 1609-1617.	3.5	42
41	Non-amphiphilic pyrene cored poly(aryl ether) dendron based gels: tunable morphology, unusual solvent effects on the emission and fluoride ion detection by the self-assembled superstructures. Soft Matter, 2012, 8, 8896.	2.7	44
42	Luminescent micro and nanogel formation from AB3 type poly(aryl ether) dendron derivatives without conventional multi-interactive gelation motifs. New Journal of Chemistry, 2011, 35, 1541.	2.8	27
43	Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Organic Letters, 2011, 13, 3714-3717.	4.6	160