Shu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475170/publications.pdf Version: 2024-02-01

SHU MANC

#	Article	IF	CITATIONS
1	Novel insights of dietary polyphenols and obesity. Journal of Nutritional Biochemistry, 2014, 25, 1-18.	1.9	705
2	Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. Journal of Nutritional Biochemistry, 2014, 25, 363-376.	1.9	361
3	Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. Journal of Nutritional Biochemistry, 2018, 58, 1-16.	1.9	196
4	Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids and Surfaces B: Biointerfaces, 2014, 113, 15-24.	2.5	184
5	Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats. Journal of Nutritional Biochemistry, 2006, 17, 492-498.	1.9	103
6	Anticancer activities of (â^')-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. Journal of Liposome Research, 2013, 23, 187-196.	1.5	102
7	Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1412.	3.3	89
8	Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chinese Journal of Natural Medicines, 2015, 13, 641-652.	0.7	84
9	Nanoencapsulation Enhances Epigallocatechin-3-gallate Stability and Its Antiatherogenic Bioactivities in Macrophages. Journal of Agricultural and Food Chemistry, 2013, 61, 9200-9209.	2.4	75
10	Reduction in dietary omega-6 polyunsaturated fatty acids: Eicosapentaenoic acid plus docosahexaenoic acid ratio minimizes atherosclerotic lesion formation and inflammatory response in the LDL receptor null mouse. Atherosclerosis, 2009, 204, 147-155.	0.4	69
11	Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids and Surfaces B: Biointerfaces, 2018, 164, 414-423.	2.5	66
12	Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system. Cell Death and Disease, 2020, 11, 87.	2.7	57
13	Epigallocatechin Gallate and Caffeine Differentially Inhibit the Intestinal Absorption of Cholesterol and Fat in Ovariectomized Rats. Journal of Nutrition, 2006, 136, 2791-2796.	1.3	50
14	In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation. British Journal of Nutrition, 2009, 102, 497.	1.2	49
15	Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (ECCG)-loaded nanoparticles. Journal of Nutritional Biochemistry, 2016, 30, 14-23.	1.9	45
16	Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutrition Research, 2018, 49, 23-36.	1.3	44
17	Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles. Journal of Controlled Release, 2015, 220, 61-70.	4.8	34
18	Recent Advances in Nanoencapsulation of Phytochemicals to Combat Obesity and Its Comorbidities. Journal of Agricultural and Food Chemistry, 2020, 68, 8119-8131.	2.4	30

Shu Wang

#	Article	IF	CITATIONS
19	Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. Journal of Controlled Release, 2021, 333, 339-351.	4.8	28
20	Beneficial Metabolic Effects of Mirabegron In Vitro and in High-Fat Diet-Induced Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 419-427.	1.3	26
21	Anti-atherogenic effects of CD36-targeted epigallocatechin gallate-loaded nanoparticles. Journal of Controlled Release, 2019, 303, 263-273.	4.8	25
22	Plasma clerance and hepatic utilization of stearic, myristic and linoleic acids introducedvia chylomicrons in rats. Lipids, 1993, 28, 697-703.	0.7	21
23	Associations between Tissue Visfatin/Nicotinamide, Phosphoribosyltransferase (Nampt), Retinol Binding Protein-4, and Vaspin Concentrations and Insulin Resistance in Morbidly Obese Subjects. Mediators of Inflammation, 2013, 2013, 1-9.	1.4	21
24	Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios. Clinical Nutrition, 2014, 33, 260-266.	2.3	14
25	Indomethacin Enhances Brown Fat Activity. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 467-475.	1.3	12
26	Preparation of flavanol-rich green tea extract by precipitation with AlCl3. Journal of the Science of Food and Agriculture, 2001, 81, 1034-1038.	1.7	9
27	Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutrition Research, 2013, 33, 1072-1082.	1.3	8
28	Enhanced Aortic Macrophage Lipid Accumulation and Inflammatory Response in LDL Receptor Null Mice Fed an Atherogenic Diet. Lipids, 2010, 45, 701-711.	0.7	7
29	Nanoparticle-mediated in vitro delivery of E4orf1 to preadipocytes is a clinically relevant delivery system to improve glucose uptake. International Journal of Obesity, 2020, 44, 1607-1616.	1.6	7
30	Nanoparticles target intimal macrophages in atherosclerotic lesions. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102346.	1.7	7
31	Transdermal Delivery of Metformin Using Dissolving Microneedles and Iontophoresis Patches for Browning Subcutaneous Adipose Tissue. Pharmaceutics, 2022, 14, 879.	2.0	7
32	Blood leptin and C-reactive protein provide more sensitive assessment than blood lipids and other inflammatory biomarkers in overweight university students. Nutrition Research, 2011, 31, 586-593.	1.3	6
33	Comparing Effects of Native and Nanoencapsualted Epigallocatechin Gallate on Liver Fat Content in LDL Receptor Null Mice. FASEB Journal, 2015, 29, LB373.	0.2	1
34	Atherogenic Diet Promotes Atherosclerotic Lesion Formation by Enhancing Inflammatory Response in the LDL Receptor Null Mouse. FASEB Journal, 2009, 23, LB510.	0.2	0
35	Associations between blood lipid and inflammatory biomarkers and obesity in university students. FASEB Journal, 2011, 25, lb289.	0.2	0
36	Lower dietary nâ€6 polyunsaturated fatty acids: eicosapentaenoic acid plus docosahexaenoic acid ratio decreases the expression of inflammatory factors in livers and visceral adipose tissue in LDL receptor null mice. FASEB Journal, 2012, 26, 1026.17.	0.2	0

Shu Wang

#	Article	IF	CITATIONS
37	Nanoencapsulation increases (â~')â€epigallocatechin gallate stability and its cellular bioavailability in macrophages. FASEB Journal, 2012, 26, 646.5.	0.2	0
38	Epigallocatechin gallate (EGCG) ―loaded nanoparticles decrease cholesterol content in THPâ€1 derived macrophages. FASEB Journal, 2013, 27, 224.5.	0.2	0
39	Visfatin and vaspin protein concentrations in different tissues and insulin resistance. FASEB Journal, 2013, 27, 865.13.	0.2	Ο
40	Quercetin encapsulated nanocarriers: effects on breast cancer cell growth, apoptosis, and uptake in vitro and bioavailability in vivo. FASEB Journal, 2013, 27, 224.3.	0.2	0
41	All omega 3 fatty acids decrease macrophage prostaglandin E2 and inflammatory cytokine production (1034.16). FASEB Journal, 2014, 28, 1034.16.	0.2	Ο