Matteo Picozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475145/publications.pdf Version: 2024-02-01

ΜΑΤΤΕΟ ΡΙΟΟΖΖΙ

#	Article	lF	CITATIONS
1	Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophysical Research Letters, 2005, 32, .	1.5	192
2	Application of Surface-Wave Methods for Seismic Site Characterization. Surveys in Geophysics, 2011, 32, 777-825.	2.1	180
3	Characterization of shallow geology by high-frequency seismic noise tomography. Geophysical Journal International, 2009, 176, 164-174.	1.0	128
4	Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S-wave velocity of bedrock. Geophysical Research Letters, 2005, 32, .	1.5	102
5	Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion andH/Vspectral ratio curves. Geophysical Journal International, 2007, 169, 189-200.	1.0	102
6	Ambient Noise Measurements for Preliminary Site-Effects Characterization in the Urban Area of Florence, Italy. Bulletin of the Seismological Society of America, 2008, 98, 1373-1388.	1.1	99
7	The Self-organizing Seismic Early Warning Information Network (SOSEWIN). Seismological Research Letters, 2009, 80, 755-771.	0.8	86
8	Site characterization by seismic noise in Istanbul, Turkey. Soil Dynamics and Earthquake Engineering, 2009, 29, 469-482.	1.9	70
9	Evidence for a difference in rupture initiation between small and large earthquakes. Nature Communications, 2014, 5, 3958.	5.8	66
10	Realâ€ŧime detection, location, and characterization of rockslides using broadband regional seismic networks. Geophysical Research Letters, 2016, 43, 6960-6967.	1.5	56
11	Statistical Analysis of Noise Horizontal-to-Vertical Spectral Ratios (HVSR). Bulletin of the Seismological Society of America, 2005, 95, 1779-1786.	1.1	53
12	Three-dimensional shear wave velocity imaging by ambient seismic noise tomography. Geophysical Journal International, 2012, 189, 501-512.	1.0	44
13	Far field damage on RC buildings: the case study of Navelli during the L'Aquila (Italy) seismic sequence, 2009. Bulletin of Earthquake Engineering, 2011, 9, 263-283.	2.3	41
14	GFZ Wireless Seismic Array (GFZ-WISE), a Wireless Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring. Sensors, 2010, 10, 3280-3304.	2.1	40
15	Shallow geology characterization using Rayleigh and Love wave dispersion curves derived from seismic noise array measurements. Journal of Applied Geophysics, 2011, 75, 345-354.	0.9	40
16	Interferometric Analysis of Strong Ground Motion for Structural Health Monitoring: The Example of the L'Aquila, Italy, Seismic Sequence of 2009. Bulletin of the Seismological Society of America, 2011, 101, 635-651.	1.1	40
17	Exploring the feasibility of a nationwide earthquake early warning system in Italy. Journal of Geophysical Research: Solid Earth, 2015, 120, 2446-2465.	1.4	40
18	Site Effects Assessment in Bishkek (Kyrgyzstan) Using Earthquake and Noise Recording Data. Bulletin of the Seismological Society of America, 2010, 100, 3068-3082.	1.1	39

#	Article	IF	CITATIONS
19	Surface wave surveys for seismic site characterization of accelerometric stations in ITACA. Bulletin of Earthquake Engineering, 2011, 9, 1797-1820.	2.3	37
20	Performance of Earthquake Early Warning Systems during the 2016–2017 MwÂ5–6.5 Central Italy Sequence. Seismological Research Letters, 2018, 89, 1-12.	0.8	36
21	Monitoring the structural dynamic response of a masonry tower: comparing classical and time-frequency analyses. Bulletin of Earthquake Engineering, 2012, 10, 1221-1235.	2.3	34
22	Rayleigh wave dispersion curves from seismological and engineering-geotechnical methods: a comparison at the Bornheim test site (Germany). Journal of Geophysics and Engineering, 2007, 4, 349-361.	0.7	33
23	Late Quaternary tectonics in the inner Northern Apennines (Siena Basin, southern Tuscany, Italy) and their seismotectonic implication. Journal of Geodynamics, 2014, 76, 25-45.	0.7	33
24	Topographic versus stratigraphic amplification: mismatch between code provisions and observations during the L'Aquila (Italy, 2009) sequence. Bulletin of Earthquake Engineering, 2013, 11, 1325-1336.	2.3	31
25	Accurate estimation of seismic source parameters of induced seismicity by a combined approach of generalized inversion and genetic algorithm: Application to The Geysers geothermal area, California. Journal of Geophysical Research: Solid Earth, 2017, 122, 3916-3933.	1.4	31
26	Impact of Magnitude Selection on Aleatory Variability Associated with Groundâ€Motion Prediction Equations: Part l—Local, Energy, and Moment Magnitude Calibration and Stressâ€Drop Variability in Central Italy. Bulletin of the Seismological Society of America, 2018, 108, 1427-1442.	1.1	31
27	Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L'Aquila, Italy): site effects or building defects?. Bulletin of Earthquake Engineering, 2011, 9, 825-840.	2.3	30
28	An onâ€site alert level early warning system for Italy. Journal of Geophysical Research: Solid Earth, 2017, 122, 2106-2118.	1.4	30
29	Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test on the Fatih Sultan Mehmet Suspension Bridge in Istanbul, Turkey. Bulletin of Earthquake Engineering, 2010, 8, 671-691.	2.3	28
30	A wireless mesh sensing network for early warning. Journal of Network and Computer Applications, 2012, 35, 538-547.	5.8	28
31	Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan). Journal of Seismology, 2013, 17, 485-505.	0.6	28
32	Reliability of Source Parameters for Small Events in Central Italy: Insights from Spectral Decomposition Analysis Applied to Both Synthetic and Real Data. Bulletin of the Seismological Society of America, 2020, 110, 3139-3157.	1.1	28
33	Earthquake Early Warning System for Schools: A Feasibility Study in Southern Italy. Seismological Research Letters, 2015, 86, 398-412.	0.8	27
34	QUICK ESTIMATES OF SOFT SEDIMENT THICKNESSES FROM AMBIENT NOISE HORIZONTAL TO VERTICAL SPECTRAL RATIOS: A CASE STUDY IN SOUTHERN ITALY. Journal of Earthquake Engineering, 2004, 8, 895-908.	1.4	25
35	Detecting long-lasting transients of earthquake activity on a fault system by monitoring apparent stress, ground motion and clustering. Scientific Reports, 2019, 9, 16268.	1.6	25
36	Impact of Magnitude Selection on Aleatory Variability Associated with Groundâ€Motion Prediction Equations: Part II—Analysis of the Betweenâ€Event Distribution in Central Italy. Bulletin of the Seismological Society of America, 2019, 109, 251-262.	1.1	25

#	Article	IF	CITATIONS
37	Deblurring of frequency-wavenumber images from small-scale seismic arrays. Geophysical Journal International, 2010, 181, 357-368.	1.0	24
38	Rapid determination of <i>P</i> waveâ€based energy magnitude: Insights on source parameter scaling of the 2016 Central Italy earthquake sequence. Geophysical Research Letters, 2017, 44, 4036-4045.	1.5	22
39	Feasibility study of a loss-driven earthquake early warning and rapid response systems for tunnels of the Italian high-speed railway network. Soil Dynamics and Earthquake Engineering, 2018, 112, 232-242.	1.9	22
40	Real time monitoring of structures in task force missions: the example of the MwÂ=Â6.3 Central Italy Earthquake, April 6, 2009. Natural Hazards, 2010, 52, 253-256.	1.6	20
41	Temporal Variability of Ground Shaking and Stress Drop in Central Italy: A Hint for Fault Healing?. Bulletin of the Seismological Society of America, 2018, 108, 1853-1863.	1.1	20
42	Shear wave velocity model of the Santiago de Chile basin derived from ambient noise measurements: a comparison of proxies for seismic site conditions and amplification. Geophysical Journal International, 2010, , no-no.	1.0	19
43	Evaluation of site effects in the Aterno river valley (Central Italy) from aftershocks of the 2009 L'Aquila earthquake. Bulletin of Earthquake Engineering, 2011, 9, 697-715.	2.3	19
44	Detection of weak seismic sequences based on arrival time coherence and empiric network detectability: an application at a near fault observatory. Geophysical Journal International, 2019, 218, 2054-2065.	1.0	18
45	Seismic Input Motion Determined from a Surface-Downhole Pair of Sensors: A Constrained Deconvolution Approach. Bulletin of the Seismological Society of America, 2010, 100, 1375-1380.	1.1	17
46	An attempt of real-time structural response assessment by an interferometric approach: A tailor-made earthquake early warning for buildings. Soil Dynamics and Earthquake Engineering, 2012, 38, 109-118.	1.9	17
47	Predicting the macroseismic intensity from early radiated <i>P</i> wave energy for onâ€site earthquake early warning in Italy. Journal of Geophysical Research: Solid Earth, 2015, 120, 7174-7189.	1.4	17
48	Earthquake early warning feasibility in the Campania region (southern Italy) and demonstration system for public school buildings. Bulletin of Earthquake Engineering, 2016, 14, 2513-2529.	2.3	17
49	Source parameter analysis of microearthquakes recorded around the underground gas storage in the Montello-Collalto Area (Southeastern Alps, Italy). Tectonophysics, 2019, 762, 159-168.	0.9	16
50	On-site earthquake early warning: a partially non-ergodic perspective from the site effects point of view. Geophysical Journal International, 2019, 216, 919-934.	1.0	16
51	Insights into Mechanical Properties of the 1980 Irpinia Fault System from the Analysis of a Seismic Sequence. Geosciences (Switzerland), 2021, 11, 28.	1.0	16
52	Moment and energy magnitudes: diversity of views on earthquake shaking potential and earthquake statistics. Geophysical Journal International, 2019, 216, 1245-1259.	1.0	15
53	Seismic networks layout optimization for a high-resolution monitoring of induced micro-seismicity. Journal of Seismology, 2020, 24, 953-966.	0.6	15
54	Forecasting the Preparatory Phase of Induced Earthquakes by Recurrent Neural Network. Forecasting, 2021, 3, 17-36.	1.6	15

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 895.	1.4	14
56	A rapid response magnitude scale for timely assessment of the high frequency seismic radiation. Scientific Reports, 2018, 8, 8562.	1.6	12
57	The RAMONES Service for Rapid Assessment of Seismic Moment and Radiated Energy in Central Italy: Concepts, Capabilities, and Future Perspectives. Seismological Research Letters, 2021, 92, 1759-1772.	0.8	12
58	Spatiotemporal Evolution of Microseismicity Seismic Source Properties at the Irpinia Near-Fault Observatory, Southern Italy. Bulletin of the Seismological Society of America, 0, , .	1.1	12
59	Stress Drop Derived from Spectral Analysis Considering the Hypocentral Depth in the Attenuation Model: Application to the Ridgecrest Region, California. Bulletin of the Seismological Society of America, 0, , .	1.1	11
60	Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City. Advances in Civil Engineering, 2012, 2012, 1-17.	0.4	10
61	Earthquake Early Warning System for Structural Drift Prediction Using Machine Learning and Linear Regressors. Frontiers in Earth Science, 2021, 9, .	0.8	10
62	Temporal Evolution of Radiated Energy to Seismic Moment Scaling During the Preparatory Phase of the Mw 6.1, 2009 L'Aquila Earthquake (Italy). Geophysical Research Letters, 2022, 49, .	1.5	10
63	The Challenges of Using Wireless Mesh Networks for Earthquake Early Warning Systems. , 2009, , .		9
64	Trans-national earthquake early warning (EEW) in north-eastern Italy, Slovenia and Austria: first experience with PRESTo at the CE ³ RN network. Advances in Geosciences, 0, 40, 51-61.	12.0	9
65	A Threshold-Based Earthquake Early-Warning System for Offshore Events in Southern Iberia. Pure and Applied Geophysics, 2015, 172, 2467-2480.	0.8	7
66	An application of coherence-based method for earthquake detection and microseismic monitoring (Irpinia fault system, Southern Italy). Journal of Seismology, 2020, 24, 979-989.	0.6	7
67	Interpretation of microtremor 2D array data using Rayleigh and Love waves: the case study of Bevagna (central Italy). Near Surface Geophysics, 2011, 9, 529-540.	0.6	6
68	Spatiotemporal Evolution of Ground-Motion Intensity at the Irpinia Near-Fault Observatory, Southern Italy. Bulletin of the Seismological Society of America, 2022, 112, 243-261.	1.1	6
69	EDIM: Earthquake Disaster Information System for the Marmara Region, Turkey. Advanced Technologies in Earth Sciences, 2014, , 103-116.	0.9	5
70	A cross-border regional earthquake early warning system: PRESTo@CE3RN. Natural Hazards, 2017, 86, 431-440.	1.6	4
71	Monitoring the Microseismicity through a Dense Seismic Array and a Similarity Search Detection Technique: Application to the Seismic Monitoring of Collalto Gas-Storage, North Italy. Energies, 2022, 15, 3504.	1.6	4
72	Applications of a Low-Cost, Wireless, Self-Organising System (SOSEWIN) to Earthquake Early Warning and Structural Health Monitoring. Advanced Technologies in Earth Sciences, 2014, , 263-288.	0.9	3

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Earthquake Engineering, 2003, 7, 599.	1.4	2
74	Evaluation of proxies for seismic site conditions in large urban areas: The example of Santiago de Chile. Physics and Chemistry of the Earth, 2011, 36, 1259-1266.	1.2	2
75	Spatio-temporal variability of seismic noise above a geothermal reservoir. Journal of Applied Geophysics, 2014, 106, 128-138.	0.9	2
76	The 2017 Ischia Earthquake (Southern Italy): Source Mechanism and Rupture Model From the Inversion of a Near-Source Strong Motion Record. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	2
77	Characterization of mass movements in the Italian Alps using regional seismic networks. , 2016, , 771-780.		2
78	A generalized zero-lag cross-correlation approach for Rapid Earthquake Localization (REL): the example of the Istanbul Megacity Rapid Response System. Journal of Seismology, 2011, 15, 557-578.	0.6	1
79	SHEER "smart―database: technical note. Acta Geophysica, 2019, 67, 291-297.	1.0	1
80	Earthquake Seismology. , 2021, , 575-586.		1