Yeon-Tae Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanoparticles: Unique effect of alloyed ingredient from experimental and theoretical investigations. Sensors and Actuators B: Chemical, 2022, 354, 131083.	7.8	24
2	Drastic improvement in photoelectrochemical water splitting performance over prolonged reaction time using new carrier-guiding semiconductor nanostructures. Journal of Materials Chemistry A, 2022, 10, 9821-9829.	10.3	8
3	Photoelectrochemical water-splitting using GaN pyramidal dots and their long-term stability in the two-electrode configuration. Journal of Materials Chemistry A, 2022, 10, 10355-10362.	10.3	7
4	Light-to-Hydrogen Improvement Based on Three-Factored Au@CeO ₂ /Gr Hierarchical Photocatalysts. ACS Nano, 2022, 16, 7848-7860.	14.6	16
5	High response and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-shell nanoparticles. Journal of Alloys and Compounds, 2021, 854, 157280.	5.5	26
6	Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanoparticles. Journal of Colloid and Interface Science, 2021, 587, 252-259.	9.4	44
7	Plasmonic Au nanoclusters dispersed in nitrogen-doped graphene as a robust photocatalyst for light-to-hydrogen conversion. Journal of Materials Chemistry A, 2021, 9, 22810-22819.	10.3	26
8	Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core–shell nanoflatforms. Journal of Industrial and Engineering Chemistry, 2021, 95, 325-332.	5.8	13
9	Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement. Applied Catalysis B: Environmental, 2021, 286, 119947.	20.2	43
10	Room-temperature operation of light-assisted NO ₂ gas sensor based on GaN nanowires and graphene. Nanotechnology, 2021, 32, 505201.	2.6	10
11	Defect-rich N-doped CeO ₂ supported by N-doped graphene as a metal-free plasmonic hydrogen evolution photocatalyst. Journal of Materials Chemistry A, 2021, 9, 10217-10230.	10.3	32
12	Improvement in the photoelectrochemical water-splitting performance using GaN nanowires with bundle structures. Journal of Materials Chemistry C, 2021, 9, 12802-12810.	5.5	8
13	Hydrothermal synthesis of In2O3 nanocubes for highly responsive and selective ethanol gas sensing. Journal of Alloys and Compounds, 2020, 820, 153133.	5.5	59
14	Pd supported N-doped CeO ₂ as an efficient hydrogen oxidation reaction catalyst in PEMFC. New Journal of Chemistry, 2020, 44, 17203-17207.	2.8	3
15	Investigating the mechanism of uniform Ag@SiO2 core-shell nanostructures synthesis by a one-pot sol–gel method. Journal of Sol-Gel Science and Technology, 2020, 96, 679-689.	2.4	5
16	Highly Efficient Photoelectrochemical Water Splitting Using GaN-Nanowire Photoanode with Tungsten Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 58028-58037.	8.0	18
17	Superfast and efficient hydrogen gas sensor using PdAu _{alloy} @ZnO core–shell nanoparticles. Journal of Materials Chemistry A, 2020, 8, 12968-12974.	10.3	81
18	Plasmonically driven photocatalytic hydrogen evolution activity of a Pt-functionalized Au@CeO ₂ core–shell catalyst under visible light. Journal of Materials Chemistry A, 2020, 8, 7687-7694.	10.3	45

#	Article	IF	CITATIONS
19	Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC. International Journal of Hydrogen Energy, 2019, 44, 24580-24590.	7.1	17
20	Construction of novel hybrid PdO–ZnO p–n heterojunction nanostructures as a high-response sensor for acetaldehyde gas. CrystEngComm, 2019, 21, 5084-5094.	2.6	57
21	Au@CeO2 nanoparticles supported Pt/C electrocatalyst to improve the removal of CO in methanol oxidation reaction. Journal of Catalysis, 2019, 377, 589-599.	6.2	52
22	Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. Journal of Materials Chemistry A, 2019, 7, 3101-3111.	10.3	31
23	Triple phase boundary and power density enhancement in PEMFCs of a Pt/C electrode with double catalyst layers. RSC Advances, 2019, 9, 15635-15641.	3.6	26
24	lonic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties. Materials Chemistry and Physics, 2019, 231, 1-8.	4.0	35
25	Polarized Light Emission from Uniaxially Oriented and Polymer-Stabilized AlE Luminogen Thin Films. Macromolecules, 2019, 52, 1739-1745.	4.8	20
26	Pt-loaded Au@CeO ₂ core–shell nanocatalysts for improving methanol oxidation reaction activity. Journal of Materials Chemistry A, 2019, 7, 26996-27006.	10.3	45
27	Fabrication of aggregated In2O3 nanospheres for highly sensitive acetaldehyde gas sensors. Journal of Alloys and Compounds, 2019, 772, 834-842.	5.5	90
28	Fabrication and Characterization of a Capacitive Photodetector Comprising a ZnS/Cu Particle/Poly(vinyl butyral) Composite. ACS Applied Materials & Interfaces, 2019, 11, 4416-4424.	8.0	13
29	Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors and Actuators B: Chemical, 2018, 268, 223-231.	7.8	162
30	lonic liquid-assisted preparation of Ag-CeO2 nanocomposites and their improved photocatalytic activity. Materials and Design, 2018, 159, 186-194.	7.0	39
31	Revisiting the thickness reduction approach for near-foldable capacitive touch sensors based on a single layer of Ag nanowire-polymer composite structure. Composites Science and Technology, 2018, 165, 58-65.	7.8	18
32	Anisotropic Thermal Interface Materials: Directional Heat Transfer in Uniaxially Oriented Liquid Crystal Networks. ACS Applied Materials & Interfaces, 2018, 10, 35557-35562.	8.0	40
33	Effect of the Nafion content in the MPL on the catalytic activity of the Pt/C-Nafion electrode prepared by pulsed electrophoresis deposition. International Journal of Hydrogen Energy, 2017, 42, 1181-1188.	7.1	15
34	Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1,3,5-tricarboxamide macrogelators. Polymer Chemistry, 2017, 8, 1888-1894.	3.9	22
35	Ultraviolet-C Photodetector Fabricated Using Si-Doped n-AlGaN Nanorods Grown by MOCVD. ACS Photonics, 2017, 4, 2595-2603.	6.6	32
36	Topochemical polymerization of dumbbell-shaped diacetylene monomers: relationship between chemical structure, molecular packing structure, and gelation property. Soft Matter, 2017, 13, 5759-5766.	2.7	19

#	Article	IF	CITATIONS
37	Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process. Nanoscale Research Letters, 2017, 12, 606.	5.7	7
38	Synthesis and electrophoretic deposition of hollow-TiO2 nanoparticles for dye sensitized solar cell applications. Journal of Alloys and Compounds, 2016, 672, 212-222.	5.5	20
39	Enhanced H ₂ gas sensing properties of Au@In ₂ O ₃ core–shell hybrid metal–semiconductor heteronanostructures. CrystEngComm, 2016, 18, 3655-3666.	2.6	78
40	Electrophoretic deposition of CdSe@CdZnS–ZnS multi core–shell QDs for quantum efficiency control of InGaN/GaN MQW LEDs. RSC Advances, 2016, 6, 95032-95037.	3.6	1
41	Facile preparation of ZnO nanosheets and its photocatalytic activity in the degradation of rhodamine B dye under UV irradiation. Electronic Materials Letters, 2016, 12, 784-788.	2.2	6
42	Remoteâ€Controllable Molecular Knob in the Mesomorphic Helical Superstructures. Advanced Functional Materials, 2016, 26, 4242-4251.	14.9	34
43	Thermal plasma synthesis of Si/SiC nanoparticles from silicon and activated carbon powders. Ceramics International, 2016, 42, 16469-16473.	4.8	13
44	Photopolymerization of Reactive Amphiphiles: Automatic and Robust Vertical Alignment Layers of Liquid Crystals with a Strong Surface Anchoring Energy. Macromolecules, 2016, 49, 23-29.	4.8	24
45	CO gas-sensing properties of CuO-TiN and CuO-TiN-TiO2 prepared by controlled oxidation of Cu-TiN composites. Metals and Materials International, 2015, 21, 330-336.	3.4	4
46	Synthesis of plasmonic Ag@SnO ₂ core–shell nanoreactors for xylene detection. RSC Advances, 2015, 5, 17653-17659.	3.6	46
47	Facile Approach to Synthesize Au@ZnO Core–Shell Nanoparticles and Their Application for Highly Sensitive and Selective Gas Sensors. ACS Applied Materials & Interfaces, 2015, 7, 9462-9468.	8.0	167
48	Synthesis of Au@SnO2 core–shell nanoparticles with controllable shell thickness and their CO sensing properties. Materials Chemistry and Physics, 2015, 166, 87-94.	4.0	28
49	Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Advances, 2015, 5, 76229-76248.	3.6	185
50	Influence of carbon precursors on thermal plasma assisted synthesis of SiC nanoparticles. Advanced Powder Technology, 2014, 25, 640-646.	4.1	22
51	Preparation of Pt/C electrode with double catalyst layers by electrophoresis deposition method for PEMFC. International Journal of Hydrogen Energy, 2014, 39, 3381-3386.	7.1	13
52	Morphology controlled Ag@SiO2 core–shell nanoparticles by ascorbic acid reduction. Journal of Materials Science: Materials in Electronics, 2014, 25, 1156-1161.	2.2	13
53	Synthesis of TiO ₂ hollow spheres by selective etching of Au@TiO ₂ core–shell nanoparticles for dye sensitized solar cell applications. RSC Advances, 2014, 4, 3529-3535.	3.6	45
54	Au@Cu ₂ O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale, 2014, 6, 581-588.	5.6	150

#	Article	IF	CITATIONS
55	Effect of Au Nanorods on Potential Barrier Modulation in Morphologically Controlled Au@Cu ₂ O Core–Shell Nanoreactors for Gas Sensor Applications. ACS Applied Materials & Interfaces, 2014, 6, 7491-7497.	8.0	75
56	Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sensors and Actuators B: Chemical, 2014, 203, 471-476.	7.8	98
57	CeO2 quantum dot functionalized ZnO nanorods photoanode for DSSC applications. Journal of Materials Science: Materials in Electronics, 2014, 25, 2872-2877.	2.2	10
58	CO gas-sensing properties of CuO-TiN and CuO-TiO2 prepared via an oxidizing process of a Cu-TiN composite synthesized by a mechanically induced gas-solid reaction. Metals and Materials International, 2014, 20, 323-328.	3.4	10
59	Functionalization of ZnO nanorods by CuO nanospikes for gas sensor applications. RSC Advances, 2014, 4, 23604.	3.6	53
60	Fabrication of Au@SiO2 core–shell nanoparticles on conducting glass substrate by pulse electrophoresis deposition. Ceramics International, 2014, 40, 13621-13626.	4.8	12
61	Gas sensing properties of single crystalline ZnO nanowires grown byÂthermal evaporation technique. Current Applied Physics, 2013, 13, 1769-1773.	2.4	30
62	Synthesis of flower-like ZnO microstructures for gas sensor applications. Sensors and Actuators B: Chemical, 2013, 178, 107-112.	7.8	143
63	Conversion of ZnO microrods into microdisks like structures and its effect on photoluminescence properties. Ceramics International, 2013, 39, 8287-8291.	4.8	13
64	Effect of the deposition time on the electrocatalytic activity of Pt/C catalyst electrodes prepared by pulsed electrophoresis deposition method. International Journal of Hydrogen Energy, 2013, 38, 3606-3613.	7.1	14
65	Solvothermal Synthesis of ZnO Nanostructures and Their Morphology-Dependent Gas-Sensing Properties. ACS Applied Materials & Interfaces, 2013, 5, 3026-3032.	8.0	183
66	Microwave assisted hydrothermal synthesis of Au@TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sensors and Actuators B: Chemical, 2013, 186, 633-639.	7.8	54
67	Citrate-assisted one-pot assembly of palladium nanoparticles onto ZnO nanorods for CO sensing application. Materials Chemistry and Physics, 2013, 142, 545-548.	4.0	9
68	Hydrothermal growth of single crystal ZnO nanorods on surface-modified graphite. Electronic Materials Letters, 2013, 9, 715-718.	2.2	6
69	Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application. Sensors and Actuators B: Chemical, 2012, 173, 58-65.	7.8	133
70	Energy coupling processes in InGaN/GaN nanopillar light emitting diodes embedded with Ag and Ag/SiO2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 21749.	6.7	24
71	Synthesis of Nanosized Silicon Carbide Through Non-Transferred Arc Thermal Plasma. Plasma Chemistry and Plasma Processing, 2012, 32, 211-218.	2.4	15
72	Nano-architecture platinum catalyst layer prepared by electrophoresis deposition for PEM fuel cells. Journal of Solid State Electrochemistry, 2012, 16, 1377-1381.	2.5	6

#	Article	IF	CITATIONS
73	Synthesis, growth mechanism and photoluminescence of monodispersed cubic shape Ce doped YAG nanophosphor. Ceramics International, 2012, 38, 235-242.	4.8	32
74	Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Materials Letters, 2012, 68, 90-93.	2.6	107
75	Synthesis of floral assembly with single crystalline ZnO nanorods and its CO sensing property. Sensors and Actuators B: Chemical, 2012, 161, 748-754.	7.8	44
76	The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors and Actuators B: Chemical, 2012, 165, 133-142.	7.8	245
77	Microwave assisted synthesis of flower-like ZnO and effect of annealing atmosphere on its photoluminescence property. Journal of Materials Science: Materials in Electronics, 2012, 23, 344-348.	2.2	15
78	Quantum efficiency control of InGaN/GaN multi-quantum-well structures using Ag/SiO2 core-shell nanoparticles. Applied Physics Letters, 2011, 99, 251114.	3.3	17
79	Synthesis and characterization of porous ZnO nanoparticles by hydrothermal treatment of as pure aqueous precursor. Materials Research Bulletin, 2011, 46, 525-530.	5.2	32
80	Ultrasonic synthesis of ZnO nano/micro structures and their photoluminescence property. Journal of Materials Science: Materials in Electronics, 2011, 22, 1053-1059.	2.2	9
81	Fabrication and optical study of Ag@SnO2 core-shell structure nanoparticle thin films. Applied Physics A: Materials Science and Processing, 2011, 104, 601-607.	2.3	11
82	Synthesis of Au/SnO2 core–shell structure nanoparticles by a microwave-assisted method and their optical properties. Journal of Solid State Chemistry, 2011, 184, 312-316.	2.9	34
83	Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications. Sensors and Actuators B: Chemical, 2011, 157, 444-449.	7.8	84
84	Synthesis and Photocatalytic Property of Metal@SnO2 Core–Shell Structure Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 453-457.	0.9	8
85	Hydrothermal growth of ZnO nanorods on a-plane GaN/sapphire template. Journal of Crystal Growth, 2010, 312, 2857-2860.	1.5	8
86	Optical studies of Au@SnO2/poly-(vinyl) alcohol core-shell nanoparticle thin films. Journal of Materials Science: Materials in Electronics, 2010, 21, 758-764.	2.2	8
87	CTAB-assisted hydrothermal synthesis of single-crystalline copper-doped ZnO nanorods and investigation of their photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2010, 21, 1036-1041.	2.2	18
88	Fabrication of flower-like ZnO microstructures from ZnO nanorods and their photoluminescence properties. Materials Chemistry and Physics, 2010, 124, 406-412.	4.0	49
89	Fabrication and properties of flower-shaped Pt@TiO2 core–shell nanoparticles. Materials Letters, 2010, 64, 2208-2210.	2.6	44
90	Polyol-assisted synthesis of TiO2 nanoparticles in a semi-aqueous solvent. Journal of Physics and Chemistry of Solids, 2009, 70, 147-152.	4.0	14

#	Article	IF	CITATIONS
91	Synthesis of violet light emitting single crystalline ZnO nanorods by using CTAB-assisted hydrothermal method. Journal of Materials Science: Materials in Electronics, 2009, 20, 967-971.	2.2	24
92	Synthesis of Coreâ^'Shell Au@TiO ₂ Nanoparticles with Truncated Wedge-Shaped Morphology and Their Photocatalytic Properties. Langmuir, 2009, 25, 6438-6447.	3.5	226
93	Growth of ZnO thin film on p-GaN/sapphire (0001) by simple hydrothermal technique. Journal of Crystal Growth, 2008, 310, 570-574.	1.5	7
94	Synthesis and fluorescence properties of pure and metal-doped spherical ZnS particles from EDTA–metal complexes. Journal of Physics and Chemistry of Solids, 2008, 69, 153-160.	4.0	17
95	Hydrothermal growth and characterization of ZnO thin film on sapphire (0001) substrate with p-GaN buffer layer. Thin Solid Films, 2008, 516, 8244-8247.	1.8	13
96	Effect of precursor on epitaxially grown of ZnO thin film on p-GaN/sapphire (0001) substrate by hydrothermal technique. Materials Research Bulletin, 2008, 43, 502-509.	5.2	8
97	Hydrothermal synthesis of single-crystalline nanocubes of Co3O4. Materials Letters, 2008, 62, 1006-1009.	2.6	63
98	Synthesis of Au/TiO2Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2Shell. Japanese Journal of Applied Physics, 2007, 46, 2567-2570.	1.5	29
99	Ag@SnO2 core–shell structure nanocomposites. Chemical Physics Letters, 2007, 442, 101-104.	2.6	24
100	SiO2-coated ZnS submicrospheres with enhanced thermal stability and photoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 143, 70-75.	3.5	10
101	Preparation of nanocrystalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity. Powder Technology, 2004, 146, 154-159.	4.2	40