Ralf Schweins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1474805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collapse of sodium polyacrylate chains in calcium salt solutions. European Physical Journal E, 2001, 5, 117-126.	0.7	126
2	Structure of Micelles of Poly(n-butyl acrylate)-block-poly(acrylic acid) Diblock Copolymers in Aqueous Solution. Macromolecules, 2007, 40, 4351-4362.	2.2	119
3	Interpenetration of polymeric microgels at ultrahigh densities. Scientific Reports, 2017, 7, 1487.	1.6	117
4	Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light. Macromolecules, 2013, 46, 4596-4605.	2.2	96
5	Viscosity and diffusion: crowding and salt effects in protein solutions. Soft Matter, 2012, 8, 1404-1419.	1.2	86
6	Salt-induced release of lipase from polyelectrolyte complex micelles. Soft Matter, 2009, 5, 242-250.	1.2	84
7	Direct Measurement of Polymer Chain Conformation in Well-Controlled Model Nanocomposites by Combining SANS and SAXS. Macromolecules, 2010, 43, 9881-9891.	2.2	78
8	Self-Aggregation of Mixtures of Oppositely Charged Polyelectrolytes and Surfactants Studied by Rheology, Dynamic Light Scattering and Small-Angle Neutron Scattering. Langmuir, 2011, 27, 4386-4396.	1.6	78
9	Calcium Induced Shrinking of NaPA Chains:Â A SANS Investigation of Single Chain Behavior. Macromolecules, 2003, 36, 9564-9573.	2.2	76
10	Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. Langmuir, 2017, 33, 1705-1715.	1.6	75
11	Nanofibrillar Structure and Molecular Mobility in Spider Dragline Silk. Macromolecules, 2005, 38, 8447-8453.	2.2	73
12	Surface aggregate structure of nonionic surfactants on silica nanoparticles. Soft Matter, 2009, 5, 2928.	1.2	71
13	Anisotropic Reinforcement of Nanocomposites Tuned by Magnetic Orientation of the Filler Network. Advanced Materials, 2008, 20, 2533-2540.	11.1	70
14	Polyisobutylene- <i>block</i> -poly(methacrylic acid) Diblock Copolymers:  Self-Assembly in Aqueous Media. Langmuir, 2007, 23, 12864-12874.	1.6	69
15	"Wet-to-Dry―Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite. Macromolecules, 2010, 43, 4833-4837.	2.2	69
16	Linking micellar structures to hydrogelation for salt-triggered dipeptide gelators. Soft Matter, 2016, 12, 3612-3621.	1.2	69
17	Dilute solution behaviour of sodium polyacrylate chains in aqueous NaCl solutions. Polymer, 2003, 44, 7131-7141.	1.8	68
18	Salt-Induced Disintegration of Lysozyme-Containing Polyelectrolyte Complex Micelles. Langmuir, 2009, 25, 11425-11430.	1.6	68

#	Article	IF	CITATIONS
19	Controlled Tuning of the Properties in Optoelectronic Self-Sorted Gels. Journal of the American Chemical Society, 2018, 140, 8667-8670.	6.6	68
20	Shift of the photonic band gap in two photonic crystal/liquid crystal composites. Applied Physics Letters, 2002, 80, 1885-1887.	1.5	67
21	The distribution of Sr 2+ counterions around polyacrylate chains analyzed by anomalous small-angle X-ray scattering. Europhysics Letters, 2004, 66, 331-337.	0.7	67
22	Water-Soluble Interpolyelectrolyte Complexes of Polyisobutylene- <i>block</i> -Poly(methacrylic acid) Micelles:  Formation and Properties. Langmuir, 2008, 24, 1769-1777.	1.6	67
23	Controlling the network type in self-assembled dipeptide hydrogels. Soft Matter, 2017, 13, 1914-1919.	1.2	65
24	Effect of Grafting on Rheology and Structure of a Simplified Industrial Nanocomposite Silica/SBR. Macromolecules, 2013, 46, 6621-6633.	2.2	64
25	Colloidal Dispersions of Tannins in Waterâ 'Ethanol Solutions. Langmuir, 2007, 23, 9949-9959.	1.6	63
26	Structure and Morphology of Charged Graphene Platelets in Solution by Small-Angle Neutron Scattering. Journal of the American Chemical Society, 2012, 134, 8302-8305.	6.6	60
27	Deswelling of Microgels in Crowded Suspensions Depends on Cross-Link Density and Architecture. Macromolecules, 2019, 52, 3995-4007.	2.2	60
28	Understanding the Mechanism of Action of Poly(amidoamine)s as Endosomolytic Polymers:Â Correlation of Physicochemical and Biological Properties. Biomacromolecules, 2004, 5, 1422-1427.	2.6	59
29	Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter, 2009, 5, 3870.	1.2	59
30	Small-angle scattering gives direct structural information about a membrane protein inside a lipid environment. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 371-383.	2.5	58
31	The D11 Small-Angle Scattering Instrument: A New Benchmark for SANS. Neutron News, 2010, 21, 15-18.	0.1	57
32	Probing the Microstructure of Nonionic Microemulsions with Ethyl Oleate by Viscosity, ROESY, DLS, SANS, and Cyclic Voltammetry. Langmuir, 2012, 28, 10640-10652.	1.6	56
33	Protein cluster formation in aqueous solution in the presence of multivalent metal ions – a light scattering study. Soft Matter, 2014, 10, 894-902.	1.2	55
34	Amphiphilic Dual Brush Block Copolymers as "Giant Surfactants―and Their Aqueous Self-Assembly. Langmuir, 2010, 26, 3145-3155.	1.6	54
35	Structural anisotropy of directionally dried colloids. Europhysics Letters, 2014, 105, 38005.	0.7	53
36	pH-Directed Aggregation to Control Photoconductivity in Self-Assembled Perylene Bisimides. CheM, 2017, 2, 716-731.	5.8	53

#	Article	IF	CITATIONS
37	Responsive hybrid block co-polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour. Polymer Chemistry, 2011, 2, 1567.	1.9	52
38	Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid and Polymer Science, 2011, 289, 699-709.	1.0	50
39	Amphiphilic Polymer Conetworks Based on End-Linked "Core-First―Star Block Copolymers: Structure Formation with Long-Range Order. ACS Macro Letters, 2015, 4, 1163-1168.	2.3	50
40	Nonlinear Effects in Multicomponent Supramolecular Hydrogels. Langmuir, 2017, 33, 2387-2395.	1.6	49
41	Using Small-Angle Scattering and Contrast Matching to Understand Molecular Packing in Low Molecular Weight Gels. Matter, 2020, 2, 764-778.	5.0	49
42	Pluronics‣tabilized Gold Nanoparticles: Investigation of the Structure of the Polymer–Particle Hybrid. ChemPhysChem, 2008, 9, 2230-2236.	1.0	48
43	Magnetic microemulsions based on magnetic ionic liquids. Physical Chemistry Chemical Physics, 2012, 14, 15355.	1.3	47
44	Elucidating Electrostatic Self-Assembly: Molecular Parameters as Key to Thermodynamics and Nanoparticle Shape. Journal of the American Chemical Society, 2016, 138, 1280-1293.	6.6	47
45	Deswelling behaviour of ionic microgel particles from low to ultra-high densities. Soft Matter, 2018, 14, 4150-4159.	1.2	47
46	Multicore Liquid Perfluorocarbonâ€Loaded Multimodal Nanoparticles for Stable Ultrasound and ¹⁹ F MRI Applied to In Vivo Cell Tracking. Advanced Functional Materials, 2019, 29, 1806485.	7.8	47
47	Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: A combined light scattering and ASAXS study. European Physical Journal E, 2006, 21, 99-110.	0.7	46
48	Small-Angle Neutron Scattering Study of Structure and Interaction of Nanoparticle, Protein, and Surfactant Complexes. Langmuir, 2013, 29, 11290-11299.	1.6	45
49	The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1572-1580.	0.5	45
50	Microstructure and mechanical properties of the superalloy ATI Allvac® 718Plus™. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 295-303.	2.6	44
51	Probing the extent of the Sr2+ ion condensation to anionic polyacrylate coils: A quantitative anomalous small-angle x-ray scattering study. Journal of Chemical Physics, 2007, 127, 154908.	1.2	42
52	Direct small-angle-neutron-scattering observation of stretched chain conformation in nanocomposites: More insight on polymer contributions in mechanical reinforcement. Physical Review E, 2010, 82, 031801.	0.8	42
53	Thermoresponsive Hydrogels Based on Telechelic Polyelectrolytes: From Dynamic to "Frozen― Networks. Macromolecules, 2018, 51, 2169-2179.	2.2	42
54	Reinforcement and Polymer Mobility in Silica–Latex Nanocomposites with Controlled Aggregation. Macromolecules, 2011, 44, 9029-9039.	2.2	41

#	Article	IF	CITATIONS
55	Liposome Formation from Bile Salt–Lipid Micelles in the Digestion and Drug Delivery Model FaSSIF _{mod} Estimated by Combined Time-Resolved Neutron and Dynamic Light Scattering. Molecular Pharmaceutics, 2011, 8, 2162-2172.	2.3	41
56	ls the Universal Law Valid for Branched Polymers?. Angewandte Chemie - International Edition, 2013, 52, 4659-4663.	7.2	41
57	Particle scattering factor of pearl necklace chains. Macromolecular Symposia, 2004, 211, 25-42.	0.4	40
58	Origin of Small-Angle Scattering from Contrast-Matched Nanoparticles: A Study of Chain and Filler Structure in Polymer Nanocomposites. Macromolecules, 2015, 48, 6596-6605.	2.2	40
59	Bending stiffness of biological membranes: What can be measured by neutron spin echo?. European Physical Journal E, 2013, 36, 75.	0.7	38
60	Reversible Photoreduction as a Trigger for Photoresponsive Gels. Chemistry of Materials, 2016, 28, 6336-6341.	3.2	38
61	Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scattering. Cellulose, 2020, 27, 71-87.	2.4	37
62	Gel Formation and Interpolymer Alkyl Chain Interactions with Poly(9,9-dioctylfluorene-2,7-diyl) (PFO) in Toluene Solution: Results from NMR, SANS, DFT, and Semiempirical Calculations and Their Implications for PFO β-Phase Formation. Macromolecules, 2011, 44, 334-343.	2.2	36
63	Network structure of polyfluorene sheets as a function of alkyl side chain length. Physical Review E, 2011, 83, 051803.	0.8	36
64	Highly active Ga promoted Co-HMS-X catalyst towards styrene epoxidation reaction using molecular O2. Applied Catalysis A: General, 2014, 482, 61-68.	2.2	36
65	Entropy driven chain effects on ligation chemistry. Chemical Science, 2015, 6, 1061-1074.	3.7	36
66	Pore Size Engineering in Mesoporous Silicas Using Supercritical CO2. Langmuir, 2005, 21, 4163-4167.	1.6	35
67	Controlling Photoconductivity in PBI Films by Supramolecular Assembly. Chemistry - A European Journal, 2018, 24, 4006-4010.	1.7	35
68	Freezing on heating of liquid solutions. Journal of Chemical Physics, 2004, 121, 5031-5034.	1.2	34
69	Pressure-induced molten globule state of human acetylcholinesterase: structural and dynamical changes monitored by neutron scattering. Physical Chemistry Chemical Physics, 2015, 17, 3157-3163.	1.3	34
70	Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Scientific Reports, 2018, 8, 13781.	1.6	34
71	Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviour. Journal of Applied Crystallography, 2019, 52, 369-377.	1.9	34
72	Demonstrating the importance of polymer-conjugate conformation in solution on its therapeutic output: Diethylstilbestrol (DES)-polyacetals as prostate cancer treatment. Journal of Controlled Release, 2012, 159, 290-301.	4.8	33

#	Article	IF	CITATIONS
73	Polymer-Grafted Magnetic Nanoparticles in Nanocomposites: Curvature Effects, Conformation of Grafted Chain, and Bimodal Nanotriggering of Filler Organization by Combination of Chain Grafting and Magnetic Field. Macromolecules, 2012, 45, 9220-9231.	2.2	32
74	Modeling of Intermediate Structures and Chain Conformation in Silica–Latex Nanocomposites Observed by SANS During Annealing. Macromolecules, 2012, 45, 1663-1675.	2.2	32
75	Studying orthogonal self-assembled systems: microstructure of gelled bicontinuous microemulsions. Soft Matter, 2014, 10, 8744-8757.	1.2	32
76	Structural heterogeneity of milk casein micelles: a SANS contrast variation study. Soft Matter, 2015, 11, 389-399.	1.2	32
77	Polymerâ^'Nanoparticle Complexes:  From Dilute Solution to Solid State. Journal of Physical Chemistry B, 2006, 110, 19140-19146.	1.2	31
78	Modulated Formation of MOF-5 Nanoparticles—A SANS Analysis. Journal of Physical Chemistry C, 2012, 116, 6127-6135.	1.5	31
79	Double-networks based on pH-responsive, amphiphilic "core-first―star first polymer conetworks prepared by sequential RAFT polymerization. Polymer Chemistry, 2017, 8, 245-259.	1.9	31
80	How Do Colloidal Aggregates Yield to Compressive Stress?. Langmuir, 2009, 25, 4692-4707.	1.6	30
81	Protein Short-Time Diffusion in a Naturally Crowded Environment. Journal of Physical Chemistry Letters, 2019, 10, 1709-1715.	2.1	30
82	Magnetization reversal in Nd-Fe-B based nanocomposites as seen by magnetic small-angle neutron scattering. Applied Physics Letters, 2013, 102, 022415.	1.5	29
83	Interplay between polymer chain conformation and nanoparticle assembly in model industrial silica/rubber nanocomposites. Faraday Discussions, 2016, 186, 325-343.	1.6	29
84	Aescin-Cholesterol Complexes in DMPC Model Membranes: A DSC and Temperature-Dependent Scattering Study. Scientific Reports, 2019, 9, 5542.	1.6	28
85	Coil Dimensions of Polystyrene Chains in Colloidâ^'Polymer Mixtures at the Protein Limit:Â A SANS Study. Macromolecules, 2005, 38, 9783-9793.	2.2	27
86	Modifications of the Mesoscopic Structure of Cellulose in Paper Degradation. Physical Review Letters, 2006, 97, 238001.	2.9	27
87	Shedding light on membrane-templated clustering of gold nanoparticles. Journal of Colloid and Interface Science, 2020, 573, 204-214.	5.0	27
88	Effective Interactions and Colloidal Stability of Bovine Î ³ -Globulin in Solution. Journal of Physical Chemistry B, 2017, 121, 5759-5769.	1.2	26
89	Enzymatic Activity of Lipaseâ~'Nanoparticle Conjugates and the Digestion of Lipid Liquid Crystalline Assemblies. Langmuir, 2010, 26, 13590-13599.	1.6	25
90	Small Angle Neutron Scattering Studies on the Internal Structure of Poly(lactide- <i>co</i> -glycolide)- <i>block</i> -poly(ethylene glycol) Nanoparticles as Drug Delivery Vehicles. Biomacromolecules, 2015, 16, 457-464.	2.6	25

#	Article	IF	CITATIONS
91	Stimulated Transitions of Directed Nonequilibrium Selfâ€Assemblies. Advanced Materials, 2017, 29, 1703495.	11.1	25
92	Silsesquioxane Molecules and Polystyrene Chains as a Model System for Colloidâ^'Polymer Mixtures in the Protein Limit. Macromolecules, 2005, 38, 151-159.	2.2	24
93	Controlled grafted brushes of polystyrene on magnetic Î ³ -Fe2O3 nanoparticles via nitroxide-mediated polymerization. Soft Matter, 2012, 8, 3407.	1.2	24
94	Structure and dynamics of balanced supercritical CO ₂ -microemulsions. Soft Matter, 2012, 8, 797-807.	1.2	24
95	Learning about SANS instruments and data reduction from round robin measurements on samples of polystyrene latex. Journal of Applied Crystallography, 2013, 46, 1289-1297.	1.9	24
96	Self-assembled polyoxometalate–dendrimer structures for selective photocatalysis. Nanoscale, 2018, 10, 914-920.	2.8	24
97	Controlled grafting of polystyrene on silicananoparticles using NMP: a new route without free initiator to tune the grafted chain length. Polymer Chemistry, 2011, 2, 567-571.	1.9	23
98	Dendronized Hyperbranched Macromolecules: Soft Matter with a Novel Type of Segmental Distribution. Angewandte Chemie - International Edition, 2015, 54, 12578-12583.	7.2	23
99	Small-angle neutron scattering of dilute polystyrene chains at the protein limit of a colloid-polymer mixture. Journal of Chemical Physics, 2005, 123, 014903.	1.2	22
100	Restructuring of Colloidal Cakes during Dewatering. Langmuir, 2007, 23, 1645-1658.	1.6	22
101	Structure–property relationships in metallosurfactants. Soft Matter, 2010, 6, 1981.	1.2	22
102	Transition from long micelles to flat bilayers driven by release of hydrotropes in mixed micelles. Soft Matter, 2013, 9, 4544.	1.2	22
103	Aescin-Induced Conversion of Gel-Phase Lipid Membranes into Bicelle-like Lipid Nanoparticles. Langmuir, 2019, 35, 16244-16255.	1.6	22
104	Nanoparticles for "two color―19F magnetic resonance imaging: Towards combined imaging of biodistribution and degradation. Journal of Colloid and Interface Science, 2020, 565, 278-287.	5.0	22
105	SANS Investigation of Global and Segmental Structures of Hyperbranched Aliphatic–Aromatic Polyesters. Macromolecules, 2012, 45, 3177-3187.	2.2	21
106	The interfacial structure of polymeric surfactant stabilised air-in-water foams. Soft Matter, 2014, 10, 3003-3008.	1.2	21
107	Monitoring the Coordination Modulator Shell at MOF Nanocrystals. Crystal Growth and Design, 2014, 14, 4859-4863.	1.4	21
108	Emulsion Ripening through Molecular Exchange at Droplet Contacts. Angewandte Chemie - International Edition, 2015, 54, 1452-1455.	7.2	21

#	Article	IF	CITATIONS
109	The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific Reports, 2017, 7, 44731.	1.6	21
110	Multimethod approach to understand the assembly of cellulose fibrils in the biosynthesis of bacterial cellulose. Cellulose, 2018, 25, 2771-2783.	2.4	21
111	Preparation of Polymer Brush Grafted Anionic or Cationic Silica Nanoparticles: Systematic Variation of the Polymer Shell. Macromolecules, 2018, 51, 6936-6948.	2.2	21
112	Soft fluctuating surfactant membranes in supercritical CO ₂ -microemulsions. Physical Chemistry Chemical Physics, 2011, 13, 3022-3025.	1.3	20
113	Structure and dynamics of polyelectrolyte surfactant mixtures under conditions of surfactant excess. Journal of Chemical Physics, 2016, 145, 124901.	1.2	20
114	Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation. Physical Chemistry Chemical Physics, 2020, 22, 18507-18517.	1.3	20
115	Small monodisperse unilamellar vesicles from binary copolymer mixtures. Soft Matter, 2009, 5, 4169.	1.2	19
116	Development of Intermolecular Structure and Beta-phase of Random Poly[9,9-bis(2-ethylhexyl)fluorene]- <i>co</i> -(9,9-dioctylfluorene) in Methylcyclohexane. Macromolecules, 2011, 44, 6453-6460.	2.2	19
117	An in-depth analysis approach enabling precision single chain nanoparticle design. Polymer Chemistry, 2020, 11, 6559-6578.	1.9	19
118	Phase behavior of ultrasoft spheres show stable bcc lattices. Physical Review E, 2020, 102, 052602.	0.8	19
119	Small-angle neutron scattering from giant water-in-oil microemulsion droplets. I. Ternary system. Journal of Chemical Physics, 2008, 128, 054502.	1.2	18
120	Microstructure of supercritical CO2-in-water microemulsions: a systematic contrast variation study. Physical Chemistry Chemical Physics, 2011, 13, 20289.	1.3	18
121	Interactions of silica nanoparticles with poly(ethylene oxide) and poly(acrylic acid): Effect of the polymer molecular weight and of the surface charge. Journal of Colloid and Interface Science, 2013, 394, 85-93.	5.0	18
122	On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures. Journal of Chemical Physics, 2015, 143, 074902.	1.2	18
123	In Vitro Evaluation of the Interaction of Dextrin–Colistin Conjugates with Bacterial Lipopolysaccharide. Journal of Medicinal Chemistry, 2016, 59, 647-654.	2.9	18
124	Assembly of small molecule surfactants at highly dynamic air–water interfaces. Soft Matter, 2017, 13, 8807-8815.	1.2	18
125	Tuning the antimicrobial activity of low molecular weight hydrogels using dopamine autoxidation. Chemical Communications, 2020, 56, 8135-8138.	2.2	18
126	Exchange-stiffness constant of a Nd-Fe-B based nanocomposite determined by magnetic neutron scattering. Applied Physics Letters, 2013, 103, .	1.5	17

#	Article	IF	CITATIONS
127	Structure and dynamics of polyelectrolytes in viscous polyelectrolyte-surfactant complexes at the mesoscale. Europhysics Letters, 2013, 104, 28001.	0.7	17
128	Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering. Physical Review E, 2013, 87, 062316.	0.8	17
129	Aggregation behaviour of hydrophobically modified polyacrylate – Variation of alkyl chain length. Polymer, 2015, 70, 194-206.	1.8	17
130	High thermal neutron flux effects on structural and macroscopic properties of alkali-borosilicate glasses used as neutron guide substrate. Nuclear Instruments & Methods in Physics Research B, 2016, 374, 14-19.	0.6	17
131	Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scattering. Scientific Reports, 2020, 10, 20844.	1.6	17
132	Protein Crystallization in the Presence of a Metastable Liquid–Liquid Phase Separation. Crystal Growth and Design, 2020, 20, 7951-7962.	1.4	17
133	Creating Transient Gradients in Supramolecular Hydrogels. Macromolecular Rapid Communications, 2020, 41, e2000093.	2.0	17
134	PAINTâ€ing Fluorenylmethoxycarbonyl (Fmoc)â€Điphenylalanine Hydrogels. Chemistry - A European Journal, 2020, 26, 9869-9873.	1.7	16
135	Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system. Journal of Chemical Physics, 2008, 128, 064902.	1.2	15
136	Pressure-Responsive, Surfactant-Free CO2-Based Nanostructured Fluids. ACS Nano, 2017, 11, 10774-10784.	7.3	15
137	Observation of a Large-Scale Superstructure in Concentrated Hemoglobin Solutions by Using Small Angle Neutron Scattering. Journal of Physical Chemistry Letters, 2010, 1, 1805-1808.	2.1	14
138	Lightâ€Responsive Shape: From Micrometerâ€Long Nanocylinders to Compact Particles in Electrostatic Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1700860.	2.0	14
139	Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature. Journal of Chemical Physics, 2018, 148, 014901.	1.2	14
140	A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes. Scientific Reports, 2018, 8, 7299.	1.6	14
141	Phase Behavior and Microstructure of Symmetric Nonionic Microemulsions with Long-Chain <i>n</i> -Alkanes and Waxes. Industrial & Engineering Chemistry Research, 2019, 58, 2583-2595.	1.8	14
142	Inverse freezing in α-cyclodextrin solutions probed by quasi elastic neutron scattering. Chemical Physics, 2006, 331, 35-41.	0.9	13
143	Temperature-Induced Collapse of Alkaline Earth Cationâ `Polyacrylate Anion Complexes. Journal of Physical Chemistry B, 2007, 111, 10431-10437.	1.2	13
144	Suppression of aggregation in natural-semiflexible/flexible polyanion mixtures, and direct check of the OSF model using SANS. Europhysics Letters, 2008, 83, 48002.	0.7	13

#	Article	IF	CITATIONS
145	Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations. Physical Review E, 2010, 81, 061905.	0.8	13
146	Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part I: Emulsions. Journal of Physical Chemistry B, 2016, 120, 5505-5512.	1.2	13
147	Insight into the self-assembly of water-soluble perylene bisimide derivatives through a combined computational and experimental approach. Nanoscale, 2019, 11, 15917-15928.	2.8	13
148	Neutralisation rate controls the self-assembly of pH-sensitive surfactants. Soft Matter, 2019, 15, 8611-8620.	1.2	13
149	Amyloid β-Peptide Interaction with Membranes: Can Chaperones Change the Fate?. Journal of Physical Chemistry B, 2019, 123, 631-638.	1.2	13
150	Molecular structure of maltoside surfactants controls micelle formation and rheological behavior. Journal of Colloid and Interface Science, 2021, 581, 895-904.	5.0	13
151	Resolving the different bulk moduli within individual soft nanogels using small-angle neutron scattering. Science Advances, 2022, 8, .	4.7	13
152	Electrostatic Self-Assembly of Dendrimer Macroions and Multivalent Dye Counterions: The Role of Solution Ionic Strength. Macromolecules, 2016, 49, 8661-8671.	2.2	12
153	Structural behaviour of sodium hyaluronate in concentrated oppositely charged surfactant solutions. Soft Matter, 2017, 13, 2253-2263.	1.2	12
154	Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part II: Suspensions. Journal of Physical Chemistry B, 2016, 120, 5513-5526.	1.2	11
155	Structure Tuning of Electrostatically Selfâ€Assembled Nanoparticles through pH: The Role of Charge Ratio. Macromolecular Chemistry and Physics, 2017, 218, 1700191.	1.1	11
156	Nonionic Aliphatic Polycarbonate Diblock Copolymers Based on CO ₂ , 1,2-Butylene Oxide, and mPEG: Synthesis, Micellization, and Solubilization. Langmuir, 2019, 35, 5221-5231.	1.6	11
157	Controlling Self-Assembly with Light and Temperature. Langmuir, 2020, 36, 223-231.	1.6	11
158	Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chemical Science, 2021, 12, 9720-9725.	3.7	11
159	Drug-Induced Dynamics of Bile Colloids. Langmuir, 2021, 37, 2543-2551.	1.6	11
160	Conformation and Interactions of Polystyrene and Fullerenes in Dilute to Semidilute Solutions. Macromolecules, 2014, 47, 6113-6120.	2.2	10
161	Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study. Langmuir, 2018, 34, 854-867.	1.6	10
162	Absence of crystals in the phase behavior of hollow microgels. Physical Review E, 2021, 103, 022612.	0.8	10

#	Article	IF	CITATIONS
163	Water-accessibility of interfibrillar spaces in spruce wood cell walls. Cellulose, 2021, 28, 11231-11245.	2.4	10
164	Stress driven creep deformation and cavitation damage in pure copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142543.	2.6	10
165	Gelation or molecular recognition; is the <i>bis</i> -(α,β-dihydroxy ester)s motif an omnigelator?. Beilstein Journal of Organic Chemistry, 2010, 6, 1079-1088.	1.3	9
166	Inducing Heteroâ€ a ggregation of Different Azo Dyes through Electrostatic Selfâ€Assembly. Chemistry - A European Journal, 2017, 23, 6249-6254.	1.7	9
167	Segregation versus Interdigitation in Highly Dynamic Polymer/Surfactant Layers. Polymers, 2019, 11, 109.	2.0	9
168	Drug Mimic Induced Conformational Changes in Model Polymerâ^'Drug Conjugates Characterized by Small-Angle Neutron Scattering. Biomacromolecules, 2010, 11, 1978-1982.	2.6	8
169	Countering the effects of gravity on a small angle neutron scattering instrument. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 665, 7-10.	0.7	8
170	Polymeric micelle disruption by cosolvents and anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 88-94.	2.3	8
171	"Nanosized latexes for textile printing applications obtained by miniemulsion polymerization― Colloid and Polymer Science, 2014, 292, 1487-1500.	1.0	8
172	Following Protein Dynamics in Real Time during Crystallization. Crystal Growth and Design, 2019, 19, 7036-7045.	1.4	8
173	Direct Structural Evidence for Interfacial Gradients in Asymmetric Polymer Nanocomposite Blends. ACS Applied Materials & Interfaces, 2021, 13, 36262-36274.	4.0	8
174	Enhancement of the mechanical properties of lysine-containing peptide-based supramolecular hydrogels by chemical cross-linking. Soft Matter, 2021, 17, 8459-8464.	1.2	8
175	From colloidal dispersions to colloidal pastes through solid-liquid separation processes. Pure and Applied Chemistry, 2005, 77, 1369-1394.	0.9	7
176	Fusion of Nonionic Vesicles. Langmuir, 2010, 26, 5421-5427.	1.6	7
177	Association of Titania with Nonionic Block Copolymers in Ethanol: The Early Stages of Templating and Film Formation. Chemistry of Materials, 2010, 22, 4579-4590.	3.2	7
178	Unexpected efficiency boosting in CO ₂ -microemulsions: a cyclohexane depletion zone near the fluorinated surfactants evidenced by a systematic SANS contrast variation study. Physical Chemistry Chemical Physics, 2015, 17, 6122-6134.	1.3	7
179	Analysis of the structure of nanocomposites of triglyceride platelets and DNA. Physical Chemistry Chemical Physics, 2015, 17, 17939-17956.	1.3	7
180	Structure Tuning of Electrostatically Self-Assembled Nanoparticles through pH. Journal of Physical Chemistry B, 2016, 120, 1380-1389.	1.2	7

#	Article	IF	CITATIONS
181	Polyacrylates in the presence of an extraordinary monovalent cation—Solution behavior and metal nanoparticle formation. Journal of Chemical Physics, 2018, 149, 163318.	1.2	7
182	Uncommon Structures of Oppositely Charged Hyaluronan/Surfactant Assemblies under Physiological Conditions. Biomacromolecules, 2020, 21, 3498-3511.	2.6	7
183	Nanoscale Coal Deformation and Alteration of Porosity and Pore Orientation Under Uniaxial Compression: An In Situ SANS Study. Rock Mechanics and Rock Engineering, 2021, 54, 3593-3608.	2.6	7
184	Quantification of Buckminsterfullerene (C60) in non-graphitizing carbon and a microstructural comparison of graphitizing and non-graphitizing carbon via Small Angle Neutron Scattering. Carbon, 2022, 189, 362-368.	5.4	7
185	Construction and physiochemical characterisation of a multi-composite, potential oral vaccine delivery system (VDS). International Journal of Pharmaceutics, 2014, 468, 264-271.	2.6	6
186	A Neutron-Transparent Flow-Through Cell (NTFT-Cell) for the SANS investigation ofÂmicrostructure evolution during industrialÂevaporativeÂcasting. Journal of Neutron Research, 2017, 19, 177-185.	0.4	6
187	Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide. Nanoscale, 2018, 10, 5550-5558.	2.8	6
188	Crossover from a Linear to a Branched Growth Regime in the Crystallization of Lysozyme. Crystal Growth and Design, 2018, 18, 1483-1494.	1.4	6
189	Invertible Micelles Based on Ion-Specific Interactions of Sr2+ and Ba2+ with Double Anionic Block Copolyelectrolytes. Macromolecules, 2019, 52, 8759-8770.	2.2	6
190	Contrast variation of micelles composed of Ca2+ and block copolymers of two negatively charged polyelectrolytes. Colloid and Polymer Science, 2020, 298, 663-679.	1.0	6
191	Using Rheo-Small-Angle Neutron Scattering to Understand How Functionalised Dipeptides Form Gels. Organic Materials, 2020, 02, 108-115.	1.0	6
192	Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers. Chemistry - A European Journal, 2021, 27, 8380-8389.	1.7	6
193	Contrasting impacts of mixed nonionic surfactant micelles on plant growth in the delivery of fungicide and herbicide. Journal of Colloid and Interface Science, 2022, 618, 78-87.	5.0	6
194	Aggregation Behavior of Nonsymmetrically End-Capped Thermoresponsive Block Copolymers in Aqueous Solutions: Between Polymer Coils and Micellar States. Macromolecules, 2022, 55, 5849-5863.	2.2	6
195	Ion-selective binding as a new trigger for micellization of block copolyelectrolytes with two anionic blocks. Soft Matter, 2019, 15, 8266-8271.	1.2	5
196	Effect of pH on the Dynamics and Structure of Thermoresponsive Telechelic Polyelectrolyte Networks: Impact on Hydrogel Injectability. ACS Applied Polymer Materials, 2021, 3, 819-829.	2.0	5
197	Protein Crystallization from a Preordered Metastable Intermediate Phase Followed by Real-Time Small-Angle Neutron Scattering. Crystal Growth and Design, 2021, 21, 6971-6980.	1.4	5
198	Solution Properties of Polyelectrolytes with Divalent Counterions. Macromolecules, 2021, 54, 10583-10593.	2.2	5

#	Article	IF	CITATIONS
199	Efficiency Boosting of Surfactants with Poly(ethylene oxide)-Poly(alkyl glycidyl ether)s: A New Class of Amphiphilic Polymers. Langmuir, 2020, 36, 9849-9866.	1.6	4
200	Unexpected observation of an intermediate hexagonal phase upon fluid-to-gel transition: SDS self-assembly in glycerol. Colloids and Interface Science Communications, 2021, 40, 100342.	2.0	4
201	How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility?. Journal of Colloid and Interface Science, 2022, 608, 193-206.	5.0	4
202	A SANS investigation of micelles in mixtures of cetyltrimethylammonium bromide (CTAB)/octyl-β-d-glucopyranoside (C8G1) in water/glycerol solvent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 117-123.	2.3	3
203	Biomimetic composites of deuterated bacterial cellulose and hemicelluloses studied with small-angle neutron scattering. European Polymer Journal, 2018, 104, 177-183.	2.6	3
204	A neutron scattering perspective on the structure, softness and dynamics of the ligand shell of PbS nanocrystals in solution. Chemical Science, 2020, 11, 8875-8884.	3.7	3
205	A temperature-controlled electric field sample environment for small-angle neutron scattering experiments. Review of Scientific Instruments, 2021, 92, 033903.	0.6	3
206	How do chain lengths of acyl-l-carnitines affect their surface adsorption and solution aggregation?. Journal of Colloid and Interface Science, 2022, 609, 491-502.	5.0	3
207	A NMR and SANS study of alkali-borosilicate behaviour under thermal neutron irradiation. Journal of Nuclear Materials, 2021, 544, 152699.	1.3	2
208	Electronic and assembly properties of a water-soluble blue naphthalene diimide. New Journal of Chemistry, 2021, 45, 14005-14013.	1.4	2
209	Free-film small-angle neutron scattering: a novel container-free <i>in situ</i> sample environment with minimized H/D exchange. Journal of Applied Crystallography, 2019, 52, 284-288.	1.9	2
210	How Temperature Rise Can Induce Phase Separation in Aqueous Biphasic Solutions. Journal of Physical Chemistry Letters, 2022, 13, 2731-2736.	2.1	2
211	Branched conformational properties of macromolecules in close relation to chemical synthesis. I. Unperturbed structures. Journal of Chemical Physics, 2015, 143, 114906.	1.2	1
212	Branched conformational properties of macromolecules in close relation to chemical synthesis. II. Influence of excluded volume interactions. Journal of Chemical Physics, 2015, 143, 114907.	1.2	1
213	Target Nanoparticles for Therapy - SANS and DLS of Drug Carrier Liposomes and Polymer Nanoparticles. Journal of Physics: Conference Series, 2016, 746, 012069.	0.3	1
214	Water channel structure of alternative perfluorosulfonic acid membranes for fuel cells. Journal of Membrane Science, 2021, 636, 119559.	4.1	1
215	Mesures SANS sous saut de pression résolues en temps. European Physical Journal Special Topics, 2005, 130, 81-84.	0.2	1
216	Time-resovled SANS studies of the hot crystallisation of PET. Physica B: Condensed Matter, 2006, 385-386, 511-513.	1.3	0

#	Article	IF	CITATIONS
217	Tuning of adsorption vs. depletion interaction in nanoparticle-polymer system. , 2013, , .		0
218	Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution. AIP Conference Proceedings, 2016, , .	0.3	0
219	Hierarchical Nanotube Selfâ€Assembly of DNA Minor Grooveâ€Binding Ligand DB921 via Alkali Halide Triggering. Macromolecular Symposia, 2019, 386, 1800243.	0.4	0
220	Exploring the Porosity in Ceramics at the nm Scale: From Understanding Historical Ceramics to Innovative Materials Design. ChemPhysChem, 2020, 21, 966-970.	1.0	0