Markus Windolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1474547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validity of a Novel Digitally Enhanced Skills Training Station for Freehand Distal Interlocking. Medicina (Lithuania), 2022, 58, 773.	0.8	3
2	Continuous Implant Load Monitoring to Assess Bone Healing Status—Evidence from Animal Testing. Medicina (Lithuania), 2022, 58, 858.	0.8	14
3	Continuous Rod Load Monitoring to Assess Spinal Fusion Status–Pilot In Vivo Data in Sheep. Medicina (Lithuania), 2022, 58, 899.	0.8	6
4	In vivo test of a radiographyâ€based navigation system for control of derotational osteotomies. Journal of Orthopaedic Research, 2021, 39, 130-135.	1.2	2
5	Smart implants in fracture care – only buzzword or real opportunity?. Injury, 2021, 52, S101-S105.	0.7	24
6	The relation between fracture activity and bone healing with special reference to the early healing phase – A preclinical study. Injury, 2021, 52, 71-77.	0.7	18
7	Cortical parameters predict bone strength at the tibial diaphysis, but are underestimated by HRâ€pQCT and μCT compared to histomorphometry. Journal of Anatomy, 2021, 238, 669-678.	0.9	4
8	Morphology of bony callus growth in healing of a sheep tibial osteotomy. Injury, 2021, 52, 66-70.	0.7	1
9	Biphasic plating improves the mechanical performance of locked plating for distal femur fractures. Journal of Biomechanics, 2021, 115, 110192.	0.9	15
10	From creative thinking to scientific principles in clinical practice. Injury, 2021, 52, 32-36.	0.7	3
11	Clinical feasibility of fracture healing assessment through continuous monitoring of implant load. Journal of Biomechanics, 2021, 116, 110188.	0.9	11
12	Generic Implant Positioning Technology Based on Hole Projections in X-Ray Images. Journal of Medical Devices, Transactions of the ASME, 2021, 15, 025002.	0.4	5
13	Growth modulation of angular deformities with a novel constant force implant concept-preclinical results. Journal of Children's Orthopaedics, 2021, 15, 137-148.	0.4	1
14	Short-Term Bone Healing Response to Mechanical Stimulation—A Case Series Conducted on Sheep. Biomedicines, 2021, 9, 988.	1.4	5
15	Impact of Bone Cement Augmentation on the Fixation Strength of TFNA Blades and Screws. Medicina (Lithuania), 2021, 57, 899.	0.8	13
16	Programable Active Fixator System for Systematic In Vivo Investigation of Bone Healing Processes. Sensors, 2021, 21, 17.	2.1	7
17	Cement augmentation of calcar screws may provide the greatest reduction in predicted screw cut-out risk for proximal humerus plating based on validated parametric computational modelling. Bone and Joint Research, 2020, 9, 534-542.	1.3	16
18	Computational optimisation of screw orientations for improved locking plate fixation of proximal humerus fractures. Journal of Orthopaedic Translation, 2020, 25, 96-104.	1.9	11

#	Article	IF	CITATIONS
19	Biphasic Plating – In vivo study of a novel fixation concept to enhance mechanobiological fracture healing. Injury, 2020, 51, 1751-1758.	0.7	9
20	Comparison of optimal screw configurations in two locking plate systems for proximal humerus fixation - a finite element analysis study. Clinical Biomechanics, 2020, 78, 105097.	0.5	7
21	Secondary Perforation Risk in Plate Osteosynthesis of Unstable Proximal Humerus Fractures: A Biomechanical Investigation of the Effect of Screw Length. Journal of Orthopaedic Research, 2019, 37, 2625-2633.	1.2	7
22	Importance of locking plate positioning in proximal humeral fractures as predicted by computer simulations. Journal of Orthopaedic Research, 2019, 37, 957-964.	1.2	26
23	Screw configuration in proximal humerus plating has a significant impact on fixation failure risk predicted by finite element models. Journal of Shoulder and Elbow Surgery, 2019, 28, 1816-1823.	1.2	22
24	The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations. Archives of Orthopaedic and Trauma Surgery, 2019, 139, 1069-1074.	1.3	24
25	Biomechanical comparison between standard and inclined screw orientation in dynamic hip screw side-plate fixation: The lift-off phenomenon. Journal of Orthopaedic Translation, 2019, 18, 92-99.	1.9	5
26	The prediction of cyclic proximal humerus fracture fixation failure by various bone density measures. Journal of Orthopaedic Research, 2018, 36, 2250-2258.	1.2	11
27	Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Science Translational Medicine, 2018, 10, .	5.8	199
28	Validated computational framework for efficient systematic evaluation of osteoporotic fracture fixation in the proximal humerus. Medical Engineering and Physics, 2018, 57, 29-39.	0.8	28
29	New approaches for cement-based prophylactic augmentation of the osteoporotic proximal femur provide enhanced reinforcement as predicted by non-linear finite element simulations. Clinical Biomechanics, 2017, 44, 7-13.	0.5	19
30	A cadaveric biomechanical study comparing the ease of femoral nail insertion: 1.0- vs 1.5-m bow designs. Archives of Orthopaedic and Trauma Surgery, 2017, 137, 663-671.	1.3	10
31	Fatigue failure of plated osteoporotic proximal humerus fractures is predicted by the strain around the proximal screws. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 68-74.	1.5	35
32	Biomechanical comparison of augmented versus non-augmented sacroiliac screws in a novel hemi-pelvis test model. Journal of Orthopaedic Research, 2017, 35, 1485-1493.	1.2	45
33	Bone cement allocation analysis in artificial cancellous bone structures. Journal of Orthopaedic Translation, 2017, 8, 40-48.	1.9	7
34	Implicit modeling of screw threads for efficient finite element analysis of complex bone-implant systems. Journal of Biomechanics, 2016, 49, 1836-1844.	0.9	45
35	Bone cement flow analysis by stepwise injection through medical cannulas. Medical Engineering and Physics, 2016, 38, 1434-1438.	0.8	2
36	Bone Mass Distribution of the Distal Tibia in Normal, Osteopenic, and Osteoporotic Conditions: An Ex Vivo Assessment Using HR-pQCT, DXA, and Computational Modelling. Calcified Tissue International, 2016, 99, 588-597.	1.5	11

#	Article	IF	CITATIONS
37	Cement augmentation of implants—no general cure in osteoporotic fracture treatment. A biomechanical study on nonâ€displaced femoral neck fractures. Journal of Orthopaedic Research, 2016, 34, 314-319.	1.2	11
38	Analysis of sacro-iliac joint screw fixation: does quality of reduction and screw orientation influence joint stability? A biomechanical study. International Orthopaedics, 2016, 40, 1537-1543.	0.9	18
39	Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57, 116-127.	1.5	32
40	Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 47-57.	2.5	15
41	Prophylactic augmentation of the osteoporotic proximal femur—mission impossible?. BoneKEy Reports, 2016, 5, 854.	2.7	19
42	Assessment of Ankle and Hindfoot Stability and Joint Pressures Using a Human Cadaveric Model of a Large Lateral Talar Process Excision. Medicine (United States), 2015, 94, e606.	0.4	12
43	Multiphasic modelling of bone ement injection into vertebral cancellous bone. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02696.	1.0	12
44	Increasing pullout strength of suture anchors in osteoporotic bone using augmentation—A cadaver study. Clinical Biomechanics, 2015, 30, 243-247.	0.5	30
45	Cement augmentation of hip implants in osteoporotic bone: How much cement is needed and where should it go?. Journal of Orthopaedic Research, 2014, 32, 362-368.	1.2	20
46	Implant Augmentation. Medicine (United States), 2014, 93, e166.	0.4	32
47	Assessment of Intraosseous Femoral Head Pressures During Cement Augmentation of the Perforated Proximal Femur Nail Antirotation Blade. Journal of Orthopaedic Trauma, 2014, 28, 398-402.	0.7	15
48	Metaphyseal Screw Augmentation of the LISS-PLT Plate With Polymethylmethacrylate Improves Angular Stability in Osteoporotic Proximal Third Tibial Fractures. Journal of Orthopaedic Trauma, 2014, 28, 294-299.	0.7	11
49	Cortical bone loss at the tibia in postmenopausal women with osteoporosis is associated with incident non-vertebral fractures: Results of a randomized controlled ancillary study of HORIZON. Maturitas, 2014, 77, 287-293.	1.0	7
50	Augmented screws in angular stable plating of the proximal humerus: What to do when revision is needed?. Clinical Biomechanics, 2014, 29, 1023-1026.	0.5	12
51	A biomechanical comparison of fixed angle locking compression plate osteosynthesis and cement augmented screw osteosynthesis in the management of intra articular calcaneal fractures. International Orthopaedics, 2014, 38, 1705-1710.	0.9	23
52	Influence of flexible fixation for open book injury after pelvic trauma — A biomechanical study. Clinical Biomechanics, 2014, 29, 657-663.	0.5	16
53	A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury, 2014, 45, S71-S75.	0.7	44
54	Two-leg alternate loading model – A different approach to biomechanical investigations of fixation methods of the injured pelvic ring with focus on the pubic symphysis. Journal of Biomechanics, 2014, 47, 380-386.	0.9	17

#	Article	IF	CITATIONS
55	Multiphasic Modelling of the Vertebral Bone for Cement-Injection Studies. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 117-118.	0.2	0
56	Microstructural Parameters of Bone Evaluated Using HR-pQCT Correlate with the DXA-Derived Cortical Index and the Trabecular Bone Score in a Cohort of Randomly Selected Premenopausal Women. PLoS ONE, 2014, 9, e88946.	1.1	29
57	Fatigue performance of angle-stable tibial nail interlocking screws. International Orthopaedics, 2013, 37, 113-118.	0.9	14
58	Biomechanical performance of different cable and wire cerclage configurations. International Orthopaedics, 2013, 37, 125-130.	0.9	76
59	Cement augmentation of lag screws: an investigation on biomechanical advantages. Archives of Orthopaedic and Trauma Surgery, 2013, 133, 373-379.	1.3	15
60	Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures. Injury, 2013, 44, 1327-1332.	0.7	95
61	In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips. Injury, 2013, 44, 1321-1326.	0.7	34
62	Tension band wiring of the olecranon: Is it really a dynamic principle of osteosynthesis?. Injury, 2013, 44, 518-522.	0.7	58
63	Influence of peri-implant bone quality on implant stability. Medical Engineering and Physics, 2013, 35, 82-87.	0.8	22
64	Limited V-shaped cement augmentation of the proximal femur to prevent secondary hip fractures. Journal of Biomaterials Applications, 2013, 28, 136-143.	1.2	37
65	Feasibility study on the potential of a spiral blade in osteoporotic distal femur fracture fixation. Archives of Orthopaedic and Trauma Surgery, 2013, 133, 1675-1679.	1.3	3
66	Mechanical behavior of fixation components for periprosthetic fracture surgery. Clinical Biomechanics, 2013, 28, 988-993.	0.5	33
67	Biomechanical comparison of three types of bone graft for anterior spondylodesis. Technology and Health Care, 2013, 21, 315-322.	0.5	3
68	Porous-media simulation of bone-cement spreading during vertebroplasty. Proceedings in Applied Mathematics and Mechanics, 2013, 13, 67-68.	0.2	1
69	Hindfoot Joint Pressure in Supination Sprains. American Journal of Sports Medicine, 2012, 40, 902-908.	1.9	3
70	Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. Journal of Trauma, 2012, 72, 1098-1101.	2.3	28
71	Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability—A biomechanical investigation in human cadaveric femoral heads. Journal of Trauma, 2012, 72, E54-E59.	2.3	49
72	Prediction of bone strength at the distal tibia by HR-pQCT and DXA. Bone, 2012, 50, 296-300.	1.4	21

#	Article	IF	CITATIONS
73	Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clinical Biomechanics, 2012, 27, 71-76.	0.5	46
74	Biomechanical evaluation of two intramedullary nailing techniques with different locking options in a three-part fracture proximal humerus model. Clinical Biomechanics, 2012, 27, 686-691.	0.5	36
75	The locking attachment plate for proximal fixation of periprosthetic femur fractures—a biomechanical comparison of two techniques. International Orthopaedics, 2012, 36, 1915-1921.	0.9	36
76	Angulated locking plate in periprosthetic proximal femur fractures: biomechanical testing of a new prototype plate. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 1437-1444.	1.3	14
77	Underneath the cerclage: an ex vivo study on the cerclage-bone interface mechanics. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 1467-1472.	1.3	42
78	Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking. BMC Musculoskeletal Disorders, 2012, 13, 8.	0.8	20
79	Angular Stability Potentially Permits Fewer Locking Screws Compared With Conventional Locking in Intramedullary Nailed Distal Tibia Fractures: A Biomechanical Study. Journal of Orthopaedic Trauma, 2011, 25, 340-346.	0.7	64
80	Effect on Dynamic Mechanical Stability and Interfragmentary Movement of Angle-Stable Locking of Intramedullary Nails in Unstable Distal Tibia Fractures: A Biomechanical Study. Journal of Trauma, 2011, 70, 358-365.	2.3	36
81	Bone marrow modified acrylic bone cement for augmentation of osteoporotic cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2081-2089.	1.5	10
82	Evaluation of a polyaxial angle-stable volar plate in a distal radius C-fracture model – A biomechanical study. Injury, 2011, 42, 1248-1252.	0.7	36
83	Impact of Complications in Total Ankle Replacement and Ankle Arthrodesis Analyzed with a Validated Outcome Measurement. Journal of Bone and Joint Surgery - Series A, 2011, 93, 830-839.	1.4	135
84	A comparison of parallel and diverging screw angles in the stability of locked plate constructs. Journal of Bone and Joint Surgery: British Volume, 2011, 93-B, 1259-1264.	3.4	16
85	DensiProbe Spine. Spine, 2010, 35, 607-612.	1.0	16
86	Stability of Medial Locking Plate and Compression Screw Versus Two Crossed Screws for Lapidus Arthrodesis. Foot and Ankle International, 2010, 31, 158-163.	1.1	72
87	Treatment of distal humeral fractures using conventional implants. Biomechanical evaluation of a new implant configuration. BMC Musculoskeletal Disorders, 2010, 11, 172.	0.8	27
88	Biomechanical investigation of an alternative concept to angular stable plating using conventional fixation hardware. BMC Musculoskeletal Disorders, 2010, 11, 95.	0.8	11
89	A novel non-bridging external fixator construct versus volar angular stable plating for the fixation of intra-articular fractures of the distal radius—A biomechanical study. Injury, 2010, 41, 204-209.	0.7	19
90	Ankle Joint Pressure Changes in a Pes Cavovarus Model After Lateralizing Calcaneal Osteotomies. Foot and Ankle International, 2010, 31, 741-746.	1.1	43

#	Article	IF	CITATIONS
91	Development of a technique for cement augmentation of nailed tibiotalocalcaneal arthrodesis constructs. Clinical Biomechanics, 2010, 25, 576-581.	0.5	31
92	Biomechanical evaluation of a new fixation technique for internal fixation of three-part proximal humerus fractures in a novel cadaveric model. Clinical Biomechanics, 2010, 25, 886-892.	0.5	46
93	Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study. Clinical Biomechanics, 2010, 25, 1053-1057.	0.5	17
94	Stability of Medial Locking Plate and Compression Screw Versus Two Crossed Screws for Lapidus Arthrodesis. Foot and Ankle International, 2010, 31, 158-163.	1.1	88
95	Comparison of Calcaneal Fixation of a Retrograde Intramedullary Nail with a Fixed-Angle Spiral Blade Versus a Fixed-Angle Screw. Foot and Ankle International, 2009, 30, 1212-1218.	1.1	27
96	Intraoperative Mechanical Bone Strength Determination in Tibiotalocalcaneal Fusion: A Biomechanical Investigation. Foot and Ankle International, 2009, 30, 1183-1189.	1.1	12
97	Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clinical Biomechanics, 2009, 24, 59-64.	0.5	98
98	Quantification of cancellous bone-compaction due to DHS® Blade insertion and influence upon cut-out resistance. Clinical Biomechanics, 2009, 24, 53-58.	0.5	91
99	Biomechanical comparison of a new staple technique with tension band wiring for transverse patella fractures. Clinical Biomechanics, 2009, 24, 855-859.	0.5	49
100	Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. Journal of Biomechanics, 2008, 41, 2776-2780.	0.9	306
101	Comparison of Locking and Conventional Screws for Maintenance of Tibial Plateau Positioning and Biomechanical Stability After Locking Tibial Plateau Leveling Osteotomy Plate Fixation. Veterinary Surgery, 2008, 37, 357-365.	0.5	48
102	Accuracy of Fragment Positioning After TPLO and Effect on Biomechanical Stability. Veterinary Surgery, 2008, 37, 366-373.	0.5	16
103	Ankle joint pressure in pes cavovarus. Journal of Bone and Joint Surgery: British Volume, 2007, 89-B, 1660-1665.	3.4	43
104	Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. European Spine Journal, 2007, 16, 2118-2125.	1.0	112
105	Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS® anchorage in femoral heads. Archives of Orthopaedic and Trauma Surgery, 2007, 127, 469-474.	1.3	37
106	Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. Journal of Orthopaedic Research, 2006, 24, 2230-2237.	1.2	64
107	Locking Plates With Computationally Enhanced Screw Trajectories Provide Superior Biomechanical Fixation Stability of Complex Proximal Humerus Fractures. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2