François Dehez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1474047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Toolkit for the Analysis of Free-Energy Perturbation Calculations. Journal of Chemical Theory and Computation, 2012, 8, 2606-2616.	2.3	153
2	Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chemical Reviews, 2018, 118, 3559-3607.	23.0	132
3	Binding of ADP in the Mitochondrial ADP/ATP Carrier Is Driven by an Electrostatic Funnel. Journal of the American Chemical Society, 2008, 130, 12725-12733.	6.6	130
4	Conformational transitions of the serotonin 5-HT3 receptor. Nature, 2018, 563, 275-279.	13.7	128
5	Modeling Membranes under a Transmembrane Potential. Journal of Physical Chemistry B, 2008, 112, 5547-5550.	1.2	94
6	Dangerous Liaisons between Detergents and Membrane Proteins. The Case of Mitochondrial Uncoupling Protein 2. Journal of the American Chemical Society, 2013, 135, 15174-15182.	6.6	86
7	Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA. Molecules, 2018, 23, 228.	1.7	85
8	Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Nature Protocols, 2022, 17, 1114-1141.	5.5	56
9	On the Electroporation Thresholds of Lipid Bilayers: Molecular Dynamics Simulation Investigations. Journal of Membrane Biology, 2013, 246, 843-850.	1.0	54
10	The substrate specificity of the human ADP/ATP carrier AAC1. Molecular Membrane Biology, 2013, 30, 160-168.	2.0	50
11	Energetics of Ion Transport in a Peptide Nanotube. Journal of Physical Chemistry B, 2007, 111, 10633-10635.	1.2	49
12	Derivation of Distributed Models of Atomic Polarizability for Molecular Simulations. Journal of Chemical Theory and Computation, 2007, 3, 1901-1913.	2.3	41
13	How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine. Journal of Physical Chemistry Letters, 2018, 9, 933-938.	2.1	41
14	Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Science Advances, 2019, 5, eaaw3818.	4.7	41
15	Distributed polarizabilities derived from induction energies: A finite perturbation approach. Journal of Chemical Physics, 2000, 112, 2709-2717.	1.2	40
16	Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron, 2022, 110, 1358-1370.e5.	3.8	39
17	Evidence of Conducting Hydrophobic Nanopores Across Membranes in Response to an Electric Field. Journal of Physical Chemistry C, 2014, 118, 6752-6757.	1.5	38
18	Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion. Nucleic Acids Research, 2016, 44, 8588-8599.	6.5	37

François Dehez

#	Article	IF	CITATIONS
19	Modeling Induction Phenomena in Intermolecular Interactions with an Ab Initio Force Field. Journal of Chemical Theory and Computation, 2007, 3, 1914-1926.	2.3	34
20	Polarizable Intermolecular Potentials for Water and Benzene Interacting with Halide and Metal Ions. Journal of Chemical Theory and Computation, 2009, 5, 3022-3031.	2.3	34
21	Water Conduction through a Peptide Nanotube. Journal of Physical Chemistry C, 2013, 117, 26797-26803.	1.5	30
22	Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity. Journal of Physical Chemistry Letters, 2016, 7, 3760-3765.	2.1	30
23	Polarization effects in molecular interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 844-854.	6.2	28
24	Effects of Phospholipid Composition on the Transfer of a Small Cationic Peptide Across a Model Biological Membrane. Journal of Chemical Theory and Computation, 2013, 9, 5675-5684.	2.3	25
25	Alternative Approaches for the Calculation of Induction Energies:Â Characterization, Effectiveness, and Pitfalls. Journal of Physical Chemistry A, 2001, 105, 11505-11514.	1.1	23
26	Charge Transfer and Chemo-Mechanical Coupling in Respiratory Complex I. Journal of the American Chemical Society, 2020, 142, 9220-9230.	6.6	22
27	High-Chloride Concentrations Abolish the Binding of Adenine Nucleotides in the Mitochondrial ADP/ATP Carrier Family. Biophysical Journal, 2009, 97, L25-L27.	0.2	20
28	The Binding of Palonosetron and Other Antiemetic Drugs to the Serotonin 5-HT3 Receptor. Structure, 2020, 28, 1131-1140.e4.	1.6	20
29	An â€~open' structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Research, 2013, 41, 7972-7986.	6.5	19
30	Structural and energetic study of cation–π–cation interactions in proteins. Physical Chemistry Chemical Physics, 2017, 19, 9849-9861.	1.3	19
31	Molecular Bases of DNA Packaging in Bacteria Revealed by All-Atom Molecular Dynamics Simulations: The Case of Histone-Like Proteins inBorrelia burgdorferi. Journal of Physical Chemistry Letters, 2019, 10, 7200-7207.	2.1	19
32	Mitochondrial ADP/ATP Carrier in Dodecylphosphocholine Binds Cardiolipins with Non-native Affinity. Biophysical Journal, 2017, 113, 2311-2315.	0.2	18
33	Deciphering the photosensitization mechanisms of hypericin towards biological membranes. Physical Chemistry Chemical Physics, 2017, 19, 23187-23193.	1.3	18
34	Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research, 2017, 45, 3654-3662.	6.5	17
35	The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair, 2019, 78, 45-59.	1.3	17
36	Enthalpy–Entropy Interplay in π-Stacking Interaction of Benzene Dimer in Water. Journal of Chemical Theory and Computation, 2019, 15, 1538-1545.	2.3	16

François Dehez

#	Article	IF	CITATIONS
37	Targeting G-quadruplexes with Organic Dyes: Chelerythrine–DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants, 2019, 8, 472.	2.2	15
38	Modeling induction phenomena in amino acid cation– \$\$pi \$\$ π interactions. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	14
39	Re-evaluating the p7 viroporin structure. Nature, 2018, 562, E8-E18.	13.7	14
40	Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. Journal of Physical Chemistry Letters, 2019, 10, 7133-7140.	2.1	14
41	Impaired Transport of Nucleotides in a Mitochondrial Carrier Explains Severe Human Genetic Diseases. ACS Chemical Biology, 2012, 7, 1164-1169.	1.6	13
42	Hepatitis C virus sequence divergence preserves p7 viroporin structural and dynamic features. Scientific Reports, 2019, 9, 8383.	1.6	13
43	Changes in Microenvironment Modulate the B- to A-DNA Transition. Journal of Chemical Information and Modeling, 2019, 59, 2324-2330.	2.5	11
44	Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Physical Chemistry Chemical Physics, 2016, 18, 33180-33186.	1.3	10
45	How Do Membrane Transporters Sense pH? The Case of the Mitochondrial ADP–ATP Carrier. Journal of Physical Chemistry Letters, 2013, 4, 3787-3791.	2.1	9
46	Assessing the physiological relevance of alternate architectures of the p7 protein of hepatitis C virus in different environments. Bioorganic and Medicinal Chemistry, 2016, 24, 4920-4927.	1.4	9
47	Effects of hydration on the protonation state of a lysine analog crossing a phospholipid bilayer – insights from molecular dynamics and free-energy calculations. Physical Chemistry Chemical Physics, 2018, 20, 9101-9107.	1.3	9
48	Binding properties of the quaternary assembly protein SPAG1. Biochemical Journal, 2019, 476, 1679-1694.	1.7	9
49	Dynamics and interactions of AAC3 in DPC are not functionally relevant. Nature Structural and Molecular Biology, 2018, 25, 745-747.	3.6	8
50	Computational Assessment of Protein–Protein Binding Specificity within a Family of Synaptic Surface Receptors. Journal of Physical Chemistry B, 2022, 126, 7510-7527.	1.2	6
51	Conformational changes of DNA induced by a <i>trans</i> azobenzene derivative <i>via</i> non-covalent interactions. Physical Chemistry Chemical Physics, 2018, 20, 22645-22651.	1.3	5
52	Structure, substrate binding and symmetry of the mitochondrial ADP/ATP carrier in its matrix-open state. Biophysical Journal, 2021, 120, 5187-5195.	0.2	5
53	An ab initio strategy for handling induction phenomena in metal ion complexes. Molecular Physics, 2008, 106, 1685-1696.	0.8	3
54	Chemomechanical Coupling of Mitochondrial Complex I. Biophysical Journal, 2019, 116, 155a.	0.2	0

#	Article	IF	CITATIONS
55	Molecular simulation: a virtual microscope in the toolbox of integrated structural biology. , 2016, , 413-436.		0