## Tim C Kietzmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1474038/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recurrence is required to capture the representational dynamics of the human visual system.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21854-21863. | 7.1  | 266       |
| 2  | Deepfakes: Trick or treat?. Business Horizons, 2020, 63, 135-146.                                                                                                                                       | 5.2  | 172       |
| 3  | An ecologically motivated image dataset for deep learning yields better models of human vision.<br>Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .        | 7.1  | 67        |
| 4  | Prevalence of Selectivity for Mirror-Symmetric Views of Faces in the Ventral and Dorsal Visual Pathways. Journal of Neuroscience, 2012, 32, 11763-11772.                                                | 3.6  | 66        |
| 5  | Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision.<br>PLoS Computational Biology, 2020, 16, e1008215.                                                   | 3.2  | 65        |
| 6  | Individual differences among deep neural network models. Nature Communications, 2020, 11, 5725.                                                                                                         | 12.8 | 62        |
| 7  | Investigating task-dependent top-down effects on overt visual attention. Journal of Vision, 2010, 10, 1-14.                                                                                             | 0.3  | 57        |
| 8  | Measures and Limits of Models of Fixation Selection. PLoS ONE, 2011, 6, e24038.                                                                                                                         | 2.5  | 51        |
| 9  | Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting. Journal of Cognitive Neuroscience, 2021, 33, 1-21.                                            | 2.3  | 43        |
| 10 | Overt Visual Attention as a Causal Factor of Perceptual Awareness. PLoS ONE, 2011, 6, e22614.                                                                                                           | 2.5  | 34        |
| 11 | An extensive dataset of eye movements during viewing of complex images. Scientific Data, 2017, 4, 160126.                                                                                               | 5.3  | 33        |
| 12 | Eye movements as a window to cognitive processes. Journal of Eye Movement Research, 2016, 9, .                                                                                                          | 0.8  | 29        |
| 13 | Incremental GRLVQ: Learning relevant features for 3D object recognition. Neurocomputing, 2008, 71, 2868-2879.                                                                                           | 5.9  | 27        |
| 14 | Representational Dynamics of Facial Viewpoint Encoding. Journal of Cognitive Neuroscience, 2017, 29, 637-651.                                                                                           | 2.3  | 26        |
| 15 | Effects of contextual information and stimulus ambiguity on overt visual sampling behavior. Vision<br>Research, 2015, 110, 76-86.                                                                       | 1.4  | 16        |
| 16 | The Occipital Face Area Is Causally Involved in Facial Viewpoint Perception. Journal of Neuroscience, 2015, 35, 16398-16403.                                                                            | 3.6  | 15        |
| 17 | Computational object recognition: a biologically motivated approach. Biological Cybernetics, 2009, 100, 59-79.                                                                                          | 1.3  | 13        |
| 18 | From photos to sketches - how humans and deep neural networks process objects across different<br>levels of visual abstraction. Journal of Vision, 2022, 22, 4.                                         | 0.3  | 13        |

TIM C KIETZMANN

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Neuro Slot Car Racer: Reinforcement Learning in a Real World Setting. , 2009, , .                                                                                                               |     | 9         |
| 20 | Extensive training leads to temporal and spatial shifts of cortical activity underlying visual category selectivity. Neurolmage, 2016, 134, 22-34.                                                  | 4.2 | 9         |
| 21 | Exploratory Multimodal Data Analysis with Standard Multimedia Player - Multimedia Containers: A<br>Feasible Solution to Make Multimodal Research Data Accessible to the Broad Audience. , 2017, , . |     | 4         |
| 22 | Perceptual learning of parametric face categories leads to the integration of high-level class-based information but not to high-level pop-out. Journal of Vision, 2010, 10, 20-20.                 | 0.3 | 3         |
| 23 | A Unifying Approach to High- and Low-Level Cognition. , 0, , .                                                                                                                                      |     | 3         |
| 24 | Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and<br>Humans. Cerebral Cortex, 2017, 27, 279-293.                                                       | 2.9 | 3         |
| 25 | Recurrent networks can recycle neural resources to flexibly trade speed for accuracy in visual recognition. , 2019, , .                                                                             |     | 3         |
| 26 | Faces strongly attract early fixations in naturally sampled real-world stimulus materials. , 2020, , .                                                                                              |     | 2         |
| 27 | Deep neural networks trained with heavier data augmentation learn features closer to representations in hIT. , 2018, , .                                                                            |     | 1         |
| 28 | Beware of the beginnings: intermediate and higher-level representations in deep neural networks are strongly affected by weight initialization. , 2018, , .                                         |     | 1         |
| 29 | Representational dynamics in the human ventral stream captured in deep recurrent neural nets. , 2018, , $\cdot$                                                                                     |     | Ο         |