Yuexiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1473874/publications.pdf

Version: 2024-02-01

430754 501076 1,901 36 18 28 h-index citations g-index papers 37 37 37 2251 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Beyond Mutual Information: Generative Adversarial Network for Domain Adaptation Using Information Bottleneck Constraint. IEEE Transactions on Medical Imaging, 2022, 41, 595-607.	5.4	14
2	Mix-and-Interpolate: A Training Strategy to Deal With Source-Biased Medical Data. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 172-182.	3.9	2
3	DICDNet: Deep Interpretable Convolutional Dictionary Network for Metal Artifact Reduction in CT Images. IEEE Transactions on Medical Imaging, 2022, 41, 869-880.	5.4	19
4	InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction. Lecture Notes in Computer Science, 2021, , 107-118.	1.0	13
5	GRAND: A large-scale dataset and benchmark for cervical intraepithelial Neoplasia grading with fine-grained lesion description. Medical Image Analysis, 2021, 70, 102006.	7.0	12
6	Anomaly Detection for Medical Images Using Self-Supervised and Translation-Consistent Features. IEEE Transactions on Medical Imaging, 2021, 40, 3641-3651.	5.4	44
7	Three dimensional convolutional neural network-based classification of conduct disorder with structural MRI. Brain Imaging and Behavior, 2020, 14, 2333-2340.	1.1	16
8	A Multi-Organ Nucleus Segmentation Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 1380-1391.	5.4	259
9	Efficient and Effective Training of COVID-19 Classification Networks With Self-Supervised Dual-Track Learning to Rank. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2787-2797.	3.9	56
10	Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Medicine, 2020, 18, 406.	2.3	46
11	Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis. Medical Image Analysis, 2020, 64, 101746.	7.0	85
12	Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-supervised Medical Image Segmentation. Lecture Notes in Computer Science, 2020, , 614-623.	1.0	39
13	Revisiting Rubik's Cube: Self-supervised Learning with Volume-Wise Transformation for 3D Medical Image Segmentation. Lecture Notes in Computer Science, 2020, , 238-248.	1.0	25
14	Instance-Aware Self-supervised Learning for Nuclei Segmentation. Lecture Notes in Computer Science, 2020, , 341-350.	1.0	30
15	Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images. IEEE Transactions on Medical Imaging, 2020, 39, 3403-3415.	5.4	59
16	Self-Supervised CycleGAN for Object-Preserving Image-to-Image Domain Adaptation. Lecture Notes in Computer Science, 2020, , 498-513.	1.0	8
17	Reverse active learning based atrous DenseNet for pathological image classification. BMC Bioinformatics, 2019, 20, 445.	1.2	26
18	HEp-Net: a smaller and better deep-learning network for HEp-2 cell classification. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 266-272.	1.3	13

#	Article	IF	CITATIONS
19	Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik's Cube. Lecture Notes in Computer Science, 2019, , 420-428.	1.0	73
20	Deep Learning Based Multimodal Brain Tumor Diagnosis. Lecture Notes in Computer Science, 2018, , 149-158.	1.0	32
21	cC-GAN: A Robust Transfer-Learning Framework for HEp-2 Specimen Image Segmentation. IEEE Access, 2018, 6, 14048-14058.	2.6	70
22	Open snake model based on global guidance field for embryo vessel location. IET Computer Vision, 2018, 12, 129-137.	1.3	3
23	GT-Net: A Deep Learning Network for Gastric Tumor Diagnosis. , 2018, , .		9
24	Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network. Sensors, 2018, 18, 556.	2.1	417
25	Deep cross residual network for HEp-2 cell staining pattern classification. Pattern Recognition, 2018, 82, 68-78.	5.1	35
26	Deep learning based gastric cancer identification. , 2018, , .		37
27	A Robust and Fast Framework for Cell Tracking. Journal of Medical Imaging and Health Informatics, 2018, 8, 939-949.	0.2	0
28	HEp-2 Specimen Image Segmentation and Classification Using Very Deep Fully Convolutional Network. IEEE Transactions on Medical Imaging, 2017, 36, 1561-1572.	5.4	45
29	An objective comparison of cell-tracking algorithms. Nature Methods, 2017, 14, 1141-1152.	9.0	399
30	A Deep Residual Inception Network for HEp-2 Cell Classification. Lecture Notes in Computer Science, 2017, , 12-20.	1.0	8
31	Positive and negative HEp-2 image classification fusing global and local features. , 2017, , .		O
32	Fuzzy entropy thresholding and multi-scale morphological approach for microscopic image enhancement. Proceedings of SPIE, 2017, , .	0.8	1
33	HEp-2 specimen classification with fully convolutional network. , 2016, , .		2
34	HEP-2 cell image classification using local features and K-means clustering based joint sparse representation. , 2016, , .		0
35	A novel adaptive local thresholding approach for segmentation of HEp-2 cell images. , 2016, , .		4
36	A method for cell image segmentation using both local and global threshold techniques. Proceedings of SPIE, 2013, , .	0.8	0