Katia Fettucciari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1473208/publications.pdf

Version: 2024-02-01

361413 315739 1,538 50 20 38 citations h-index g-index papers 51 51 51 2490 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110327.	3.2	8
2	Proinflammatory Cytokines: Possible Accomplices for the Systemic Effects of Clostridioides difficile Toxin B. Journal of Inflammation Research, 2021, Volume 14, 57-62.	3.5	6
3	Crosstalk between Long-Term Sublethal Oxidative Stress and Detrimental Inflammation as Potential Drivers for Age-Related Retinal Degeneration. Antioxidants, 2021, 10, 25.	5.1	11
4	Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease May be Favoured by the Effects of Proinflammatory Cytokines on the Enteroglial Network. Journal of Inflammation Research, 2021, Volume 14, 7443-7453.	3.5	4
5	The cytotoxic synergy betweenClostridioides difficiletoxin B and proinflammatory cytokines: an unholy alliance favoring the onset ofClostridioides difficileinfection and relapses. MicrobiologyOpen, 2020, 9, e1061.	3.0	9
6	Acetamidine-Based iNOS Inhibitors as Molecular Tools to Counteract Inflammation in BV2 Microglial Cells. Molecules, 2020, 25, 2646.	3.8	9
7	The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon, 2020, 6, e05741.	3.2	11
8	Guanylin, Uroguanylin and Guanylate Cyclase-C Are Expressed in the Gastrointestinal Tract of Horses. Frontiers in Physiology, 2019, 10, 1237.	2.8	2
9	Gentamicin Targets Acid Sphingomyelinase in Cancer: The Case of the Human Gastric Cancer NCI-N87 Cells. International Journal of Molecular Sciences, 2019, 20, 4375.	4.1	9
10	Nicotine induces apoptosis in human osteoblasts via a novel mechanism driven by H2O2 and entailing Glyoxalase 1-dependent MG-H1 accumulation leading to TG2-mediated NF-kB desensitization: Implication for smokers-related osteoporosis. Free Radical Biology and Medicine, 2018, 117, 6-17.	2.9	69
11	Clostridium difficile-related postinfectious IBS: a case of enteroglial microbiological stalking and/or the solution of a conundrum?. Cellular and Molecular Life Sciences, 2018, 75, 1145-1149.	5.4	22
12	Palmitate lipotoxicity in enteric glial cells: Lipid remodeling and mitochondrial ROS are responsible for cyt c release outside mitochondria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 895-908.	2.4	12
13	Effects of probiotic bacteria on mucosal polyamines levels in dogs with IBD and colonic polyps: a preliminary study. Beneficial Microbes, 2018, 9, 247-255.	2.4	19
14	VDR independent induction of acid-sphingomyelinase by 1,23(OH)2 D3 in gastric cancer cells: Impact on apoptosis and cell morphology. Biochimie, 2018, 146, 35-42.	2.6	10
15	Clostridium difficile toxin B induces senescence in enteric glial cells: A potential new mechanism of Clostridium difficile pathogenesis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1945-1958.	4.1	24
16	Enteric glial cells are susceptible to Clostridium difficile toxin B. Cellular and Molecular Life Sciences, 2017, 74, 1527-1551.	5.4	37
17	Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways. Scientific Reports, 2017, 7, 45569.	3.3	26
18	Effects of Single-Dose Prucalopride on Intestinal Hypomotility in Horses: Preliminary Observations. Scientific Reports, 2017, 7, 41526.	3.3	11

#	Article	IF	CITATIONS
19	Macrophage induced gelsolin in response to Group BStreptococcus(GBS) infection. Cellular Microbiology, 2015, 17, 79-104.	2.1	3
20	Transcriptional regulation of kinases downstream of the T cell receptor: another immunomodulatory mechanism of glucocorticoids. BMC Pharmacology & English (2014), 15, 35.	2.4	23
21	Role of glyoxalase I in the proliferation and apoptosis control of human LNCaP and PC3 prostate cancer cells. Prostate, 2013, 73, 121-132.	2.3	40
22	γâ€Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch downâ€regulation. International Journal of Cancer, 2013, 132, 1940-1953.	5.1	45
23	A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 836-844.	2.8	61
24	Impairment of brain mitochondrial functions by \hat{l}^2 -hemolytic Group B Streptococcus. Effect of cardiolipin and phosphatidylcholine. Journal of Bioenergetics and Biomembranes, 2013, 45, 519-529.	2.3	2
25	Notch1 modulates mesenchymal stem cells mediated regulatory <scp>T</scp> â€eell induction. European Journal of Immunology, 2013, 43, 182-187.	2.9	59
26	Group B Streptococcus (GBS) disrupts by calpain activation the actin and microtubule cytoskeleton of macrophages. Cellular Microbiology, 2011, 13, 859-884.	2.1	23
27	Eicosapentaenoic Acid Demethylates a Single CpG That Mediates Expression of Tumor Suppressor CCAAT/Enhancer-binding Protein δin U937 Leukemia Cells. Journal of Biological Chemistry, 2011, 286, 27092-27102.	3.4	70
28	Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood, 2010, 116, 2713-2723.	1.4	76
29	Protein expression changes induced in murine peritoneal macrophages by Group B Streptococcus. Proteomics, 2010, 10, 2099-2112.	2.2	7
30	Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood, 2009, 113, 856-865.	1.4	263
31	GITR-GITRL System, A Novel Player in Shock and Inflammation. Scientific World Journal, The, 2007, 7, 533-566.	2.1	53
32	Interleukin-7–Engineered Mesenchymal Cells: In Vitro Effects on Naive T-Cell Population. Biology of Blood and Marrow Transplantation, 2006, 12, 1250-1260.	2.0	9
33	Modulation of Pro- and Antiapoptotic Molecules in Double-Positive (CD4+CD8+) Thymocytes following Dexamethasone Treatment. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 887-897.	2.5	37
34	Group B <i>Streptococcus</i> Induces Macrophage Apoptosis by Calpain Activation. Journal of Immunology, 2006, 176, 7542-7556.	0.8	61
35	Engineering Mesenchymal Cells with Interleukin 7 Gene: In Vitro Effects on Naive T Cell Population Blood, 2006, 108, 5135-5135.	1.4	0
36	Graft engineering for allogeneic haploidentical stem cell transplantation. Blood Cells, Molecules, and Diseases, 2004, 33, 274-280.	1.4	18

3

#	Article	IF	CITATIONS
37	Involvement of mitogen-activated protein kinases in Group B Streptococcus-induced macrophage apoptosis. Pharmacological Research, 2003, 47, 355-362.	7.1	17
38	Effect of trichostatin a and $5\hat{a}\in^2$ -azacytidine on transgene reactivation in U937 transduced cells. Pharmacological Research, 2003, , .	7.1	5
39	Effect of trichostatin a and 5'-azacytidine on transgene reactivation in U937 transduced cells. Pharmacological Research, 2003, 48, 111-8.	7.1	9
40	Group B streptococcus (GBS) modifies macrophage phosphatidylserine metabolism during induction of apoptosis. FEBS Letters, 2002, 520, 68-72.	2.8	13
41	In vitro Effects of Meropenem and Imipenem/Cilastatin on Some Functions of Human Natural Effector Cells. Chemotherapy, 2000, 46, 135-142.	1.6	5
42	Differential Role of p38 and c-Jun N-Terminal Kinase 1 Mitogen-Activated Protein Kinases in NK Cell Cytotoxicity. Journal of Immunology, 2000, 165, 1782-1789.	0.8	85
43	Group B <i>Streptococcus</i> Induces Apoptosis in Macrophages. Journal of Immunology, 2000, 165, 3923-3933.	0.8	74
44	In Vivo Demethylation of a MoMuLV Retroviral Vector Expressing the Herpes Simplex Thymidine Kinase Suicide Gene by 5′ Azacytidine. Stem Cells, 2000, 18, 415-421.	3.2	3
45	Cytokine Response to Group B Streptococcus Infection in Mice. Scandinavian Journal of Immunology, 1998, 47, 314-323.	2.7	14
46	Group B streptococci persist inside macrophages. Immunology, 1998, 93, 86-95.	4.4	98
47	Activity Inhibition of Cytolytic Lymphocytes by Omeprazole. Scandinavian Journal of Immunology, 1996, 44, 204-214.	2.7	36
48	Activation of cytokine genes during primary and anamnestic immune response to inactivated C. albicans. Immunology, 1996, 89, 142-151.	4.4	10
49	Cytokine Response to Inactivated Candida albicans in Mice. Cellular Immunology, 1995, 162, 256-264.	3.0	12
50	Induction and Persistence in Vivo of NK/LAK Activity by a Mannoprotein Component of Candida albicans Cell Wall. Cellular Immunology, 1994, 155, 265-282.	3.0	8