
Juana Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1472790/publications.pdf Version: 2024-02-01

ΙΠΑΝΑ ΡΑΩρες

#	Article	IF	CITATIONS
1	Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology, 2002, 5, 53-63.	1.1	1,195
2	Complete genome sequence of the myxobacterium Sorangium cellulosum. Nature Biotechnology, 2007, 25, 1281-1289.	9.4	354
3	Myxobacteria: Moving, Killing, Feeding, and Surviving Together. Frontiers in Microbiology, 2016, 7, 781.	1.5	274
4	Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 1992, 58, 2402-2409.	1.4	222
5	Bacterial predation: 75 years and counting!. Environmental Microbiology, 2016, 18, 766-779.	1.8	190
6	Mineralization of ¹⁴ C-Ring-Labeled Synthetic Lignin Correlates with the Production of Lignin Peroxidase, not of Manganese Peroxidase or Laccase. Applied and Environmental Microbiology, 1990, 56, 1806-1812.	1.4	117
7	Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15950-15955.	3.3	105
8	Phenolic content and antibacterial activity of olive oil waste waters. Environmental Toxicology and Chemistry, 1992, 11, 489-495.	2.2	104
9	Effect of extracts obtained from olive oil mill waste waters on <i>Bacillus megaterium</i> ATCC 33085. Journal of Applied Bacteriology, 1988, 64, 219-226.	1.1	93
10	<i>Myxococcus xanthus</i> induces actinorhodin overproduction and aerial mycelium formation by <i>Streptomyces coelicolor</i> . Microbial Biotechnology, 2011, 4, 175-183.	2.0	86
11	Low molecular weight phenolics attenuation during simulated treatment of wastewaters from olive oil mills in evaporation ponds. Water Research, 1992, 26, 1261-1266.	5.3	78
12	Effect of waste waters from olive oil extraction plants on the bacterial population of soil. Chemosphere, 1986, 15, 659-664.	4.2	73
13	<i>Phanerochaete flavido-alba</i> Laccase Induction and Modification of Manganese Peroxidase Isoenzyme Pattern in Decolorized Olive Oil Mill Wastewaters. Applied and Environmental Microbiology, 1998, 64, 2726-2729.	1.4	58
14	Rhizobial galactoglucan determines the predatory pattern of <scp><i>M</i></scp> <i>yxococcus xanthus</i> and protects <scp><i>S</i></scp> <i>inorhizobium meliloti</i> from predation. Environmental Microbiology, 2014, 16, 2341-2350.	1.8	56
15	CorE from Myxococcus xanthus Is a Copper-Dependent RNA Polymerase Sigma Factor. PLoS Genetics, 2011, 7, e1002106.	1.5	49
16	The antibiotic crisis: How bacterial predators can help. Computational and Structural Biotechnology Journal, 2020, 18, 2547-2555.	1.9	45
17	Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Molecular Microbiology, 2005, 56, 1159-1168.	1.2	34
18	Differential Expression of the Three Multicopper Oxidases from Myxococcus xanthus. Journal of Bacteriology, 2007, 189, 4887-4898.	1.0	31

Juana Pérez

#	Article	IF	CITATIONS
19	Differential Regulation of Six Heavy Metal Efflux Systems in the Response of <i>Myxococcus xanthus</i> to Copper. Applied and Environmental Microbiology, 2010, 76, 6069-6076.	1.4	31
20	Purification and Partial Characterization of a Laccase from the White Rot Fungus Phanerochaete flavido-alba. Applied and Environmental Microbiology, 1996, 62, 4263-4267.	1.4	31
21	Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. ELife, 2019, 8, .	2.8	31
22	Apurinic/apyrimidinic endonuclease genes from the Trypanosomatidae Leishmania major and Trypanosoma cruzi confer resistance to oxidizing agents in DNA repair-deficient Escherichia coli. Nucleic Acids Research, 1999, 27, 771-777.	6.5	30
23	Comprehensive Set of Integrative Plasmid Vectors for Copper-Inducible Gene Expression in Myxococcus xanthus. Applied and Environmental Microbiology, 2012, 78, 2515-2521.	1.4	29
24	In depth analysis of the mechanism of action of metal-dependent sigma factors: characterization of CorE2 from <i>Myxococcus xanthus</i> . Nucleic Acids Research, 2016, 44, 5571-5584.	6.5	28
25	Role of organic acid chelators in manganese regulation of lignin degradation byPhanerochaete chrysosporium. Applied Biochemistry and Biotechnology, 1993, 39-40, 227-238.	1.4	27
26	Characterization of deoxyuridine 5′-triphosphate nucleotidohydrolase fromTrypanosoma cruzi1. FEBS Letters, 2002, 526, 147-150.	1.3	23
27	Characterization of manganese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba. Research in Microbiology, 2002, 153, 547-554.	1.0	23
28	Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced byPhanerochaete flavido-alba. FEMS Microbiology Letters, 2002, 212, 41-45.	0.7	23
29	Regulation of Ligninase Production in White-Rot Fungi. ACS Symposium Series, 1991, , 200-206.	0.5	21
30	Metalâ€responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Molecular Microbiology, 2019, 112, 385-398.	1.2	21
31	Phanerochaete flavido-alba ligninolytic activities and decolorization of partially bio-depurated paper mill wastes. Water Research, 1997, 31, 495-502.	5.3	20
32	Expression and Physiological Role of Three <i>Myxococcus xanthus</i> Copper-Dependent P _{1B} -Type ATPases during Bacterial Growth and Development. Applied and Environmental Microbiology, 2010, 76, 6077-6084.	1.4	19
33	Copper and Melanin Play a Role in Myxococcus xanthus Predation on Sinorhizobium meliloti. Frontiers in Microbiology, 2020, 11, 94.	1.5	18
34	The complex global response to copper in the multicellular bacterium <i>Myxococcus xanthus</i> . Metallomics, 2018, 10, 876-886.	1.0	16
35	Bacteria degrading phenolic acids isolated on a polymeric phenolic pigment. Journal of Applied Bacteriology, 1990, 69, 38-42.	1.1	15
36	Role of Two Novel Two-Component Regulatory Systems in Development and Phosphatase Expression in Myxococcus xanthus. Journal of Bacteriology, 2003, 185, 1376-1383.	1.0	15

Juana Pérez

#	Article	IF	CITATIONS
37	The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development. PLoS ONE, 2013, 8, e68240.	1.1	13
38	Dissection of the sensor domain of the copper-responsive histidine kinase CorS fromMyxococcus xanthus. Environmental Microbiology Reports, 2016, 8, 363-370.	1.0	12
39	Properties of a laccase produced byPhanerochaete flavido-alba induced by vanillin. Archives of Microbiology, 2002, 179, 70-73.	1.0	10
40	A novel mechanism of bacterial adaptation mediated by copper-dependent RNA polymerase Ï f factors. Transcription, 2012, 3, 63-67.	1.7	9
41	PhoR1-PhoP1, a Third Two-Component System of the Family PhoRP from Myxococcus xanthus : Role in Development. Journal of Bacteriology, 2005, 187, 4976-4983.	1.0	7
42	Editorial: Mechanisms of Prokaryotic Predation. Frontiers in Microbiology, 2020, 11, 2071.	1.5	6
43	Mechanisms of Action of Non-Canonical ECF Sigma Factors. International Journal of Molecular Sciences, 2022, 23, 3601.	1.8	6
44	Myxococcus xanthus Pph2 Is a Manganese-dependent Protein Phosphatase Involved in Energy Metabolism. Journal of Biological Chemistry, 2009, 284, 28720-28728.	1.6	3
45	Phenolic content and antibacterial activity of olive oil waste waters. , 1992, 11, 489.		3
46	Fungal Lignocellulolytic Enzymes: Applications in Biodegradation and Bioconversion. , 2011, , 28-44.		1

Fungal Lignocellulolytic Enzymes: Applications in Biodegradation and Bioconversion. , 2011, , 28-44. 46