Kenichi Miharada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1472532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic analysis of functional diversity of human umbilical cord blood hematopoietic stem/progenitor cells in erythroid differentiation. International Journal of Hematology, 2022, , 1.	1.6	1
2	CD244 expression represents functional decline of murine hematopoietic stem cells after inÂvitro culture. IScience, 2022, 25, 103603.	4.1	9
3	Mitochondrial Potentiation Ameliorates Age-Related Heterogeneity in Hematopoietic Stem Cell Function. Cell Stem Cell, 2021, 28, 241-256.e6.	11.1	84
4	Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Communications Biology, 2021, 4, 677.	4.4	7
5	Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system. Human Cell, 2021, , 1.	2.7	6
6	Reprogramming Human Cancer Cells into Antigen Presentation. Blood, 2021, 138, 1709-1709.	1.4	0
7	Induction of blood-circulating bile acids supports recovery from myelosuppressive chemotherapy. Blood Advances, 2020, 4, 1833-1843.	5.2	12
8	Junctional Adhesion Molecule 2 Represents a Subset of Hematopoietic Stem Cells with Enhanced Potential for T Lymphopoiesis. Cell Reports, 2019, 27, 2826-2836.e5.	6.4	8
9	Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Scientific Reports, 2019, 9, 5154.	3.3	12
10	The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma—Association with Clinical Outcome and Tumor Phenotypes. Cancers, 2019, 11, 1981.	3.7	16
11	CD244 Marks Non-Functional Hematopoietic Stem Cells with a Mast Cell Signature after Induction of Endoplasmic Reticulum Stress. Blood, 2019, 134, 2474-2474.	1.4	1
12	Identification of Potential Chemical Compounds Able to Trigger Enucleation of Immortalized Human Erythroid Cell Lines. Blood, 2019, 134, 951-951.	1.4	1
13	Mitochondrial Activity Identifies a Transcriptionally and Functionally Distinct Subset of Aged HSCs with Lineage-Balanced Output. Blood, 2019, 134, 2480-2480.	1.4	0
14	Regulation of unfolded protein response in hematopoietic stem cells. International Journal of Hematology, 2018, 107, 627-633.	1.6	31
15	The stem cell regulator PEDF is dispensable for maintenance and function of hematopoietic stem cells. Scientific Reports, 2017, 7, 10134.	3.3	4
16	Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration. Cell Reports, 2017, 21, 3514-3523.	6.4	72
17	Junctional Adhesion Molecule 2 Intensifies T Lymphopoiesis of Hematopoietic Stem Cells By Facilitating Notch/Delta Signaling. Blood, 2017, 130, 635-635.	1.4	0
18	Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Cell Stem Cell, 2016, 18, 522-532.	11.1	81

Kenichi Miharada

#	Article	IF	CITATIONS
19	The putative tumor suppressor gene EphA7 is a novel BMI-1 target. Oncotarget, 2016, 7, 58203-58217.	1.8	8
20	Bile acids support expanding hematopoietic stem/progenitor cells in the fetal liver. Experimental Hematology, 2015, 43, S95.	0.4	0
21	Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Blood, 2015, 126, 897-897.	1.4	0
22	PEDF regulates hematopoietic stem cell maintenance. Experimental Hematology, 2014, 42, S57.	0.4	0
23	Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathologica, 2014, 128, 381-396.	7.7	153
24	Dppa5 Improves Hematopoietic Stem Cell Activity by Reducing Endoplasmic Reticulum Stress. Cell Reports, 2014, 7, 1381-1392.	6.4	69
25	Taurine-Conjugated Bile Acids Protect Expanding Hematopoietic Stem/Progenitor Cells from Unfolded Protein Stress As Natural Chaperones. Blood, 2014, 124, 4318-4318.	1.4	2
26	The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Reports, 2013, 4, 642-648.	6.4	42
27	Reduction in endoplasmic reticulum (ER) stress enables maintenance of functional hematopoietic stem cells in vitro. Experimental Hematology, 2013, 41, S42.	0.4	Ο
28	Establishment of Immortalized Human Erythroid Progenitor Cell Lines Able to Produce Enucleated Red Blood Cells. PLoS ONE, 2013, 8, e59890.	2.5	299
29	SPARC is dispensable for murine hematopoiesis, despite its suspected pathophysiological role in 5q-myelodysplastic syndrome. Leukemia, 2012, 26, 2416-2419.	7.2	19
30	Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIFâ€1α in the hypoxic bone marrow niche. Annals of the New York Academy of Sciences, 2012, 1266, 55-62.	3.8	24
31	Common Signaling Networks Characterize Leukemia-Initiating Cells in Acute Myeloid Leukemia. Cell Stem Cell, 2012, 10, 109-110.	11.1	2
32	In Vitro Production of Enucleated Red Blood Cells from Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2012, 879, 505-512.	0.9	5
33	Developmental Pluripotency Associated 5 (Dppa5) Regulates Hematopoietic Stem Cell Reconstitution Capacity by Modulating Cellular Metabolism and ER Stress. Blood, 2012, 120, 847-847.	1.4	2
34	Cripto Regulates Hematopoietic Stem Cells as a Hypoxic-Niche-Related Factor through Cell Surface Receptor GRP78. Cell Stem Cell, 2011, 9, 330-344.	11.1	152
35	Plasticity of Cells and <i>Ex Vivo</i> Production of Red Blood Cells. Stem Cells International, 2011, 2011, 1-8.	2.5	13
36	Red blood cell production from immortalized progenitor cell line. International Journal of Hematology, 2011, 93, 5-9.	1.6	15

Kenichi Miharada

#	ARTICLE	IF	CITATIONS
37	Sparc Is Dispensable for Murine Hematopoiesis, Despite Its Suspected Role in 5q- Myelodysplastic Syndrome. Blood, 2011, 118, 4822-4822.	1.4	0
38	Cripto Regulates Hematopoietic Stem Cells As a Hypoxic Niche Related Factor Through the Cell Surface Receptor GRP78. Blood, 2011, 118, 2332-2332.	1.4	0
39	Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood, 2010, 115, 4689-4698.	1.4	50
40	Cripto Selectively Expands a Distinct Population of Hematopoietic Stem Cells Expressing the Cell Surface Receptor GRP78 and Strongly Induces An Immature Phenotype In Vivo After Ex Vivo Culture. Blood, 2010, 116, 405-405.	1.4	0
41	Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months. Advances in Hematology, 2009, 1-7.	1.0	8
42	Lipocalin 2â€mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. Journal of Cellular Physiology, 2008, 215, 526-537.	4.1	72
43	Human umbilical cord-derived cells can often serve as feeder cells to maintain primate embryonic stem cells in a state capable of producing hematopoietic cells. Cell Biology International, 2008, 32, 1-7.	3.0	10
44	Establishment of Mouse Embryonic Stem Cell-Derived Erythroid Progenitor Cell Lines Able to Produce Functional Red Blood Cells. PLoS ONE, 2008, 3, e1544.	2.5	84
45	Mesenchymal Progenitors Able to Differentiate into Osteogenic, Chondrogenic, and/or Adipogenic Cells In Vitro Are Present in Most Primary Fibroblast-Like Cell Populations. Stem Cells, 2007, 25, 1610-1617.	3.2	204
46	Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nature Biotechnology, 2006, 24, 1255-1256.	17.5	178
47	Long-lasting in vitro hematopoiesis derived from primate embryonic stem cells. Experimental Hematology, 2006, 34, 760-769.	0.4	34
48	Abstract of Poster Presentation. Human Cell, 2005, 18, 43-65.	2.7	0
49	Induction of enucleation in primary and immortalized erythroid cells. International Journal of Hematology, 0, , .	1.6	3