Xiaoxiang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1472191/publications.pdf

Version: 2024-02-01

623734 713466 22 607 14 21 citations g-index h-index papers 23 23 23 529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How Does van der Waals Confinement Enhance Phonon Transport?*. Chinese Physics Letters, 2021, 38, 014401.	3.3	24
2	Electric-field-induced modulation of thermal conductivity in poly(vinylidene fluoride). Nano Energy, 2021, 82, 105749.	16.0	45
3	Direct Visualization and Manipulation of Stacking Orders in Few-Layer Graphene by Dynamic Atomic Force Microscopy. Journal of Physical Chemistry Letters, 2021, 12, 7328-7334.	4.6	9
4	<i>Ab initio</i> validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter. Physical Review Research, 2021, 3, .	3.6	14
5	Evidence of spin reorientation and anharmonicity in kagome ferromagnet Fe3Sn2. Applied Physics Letters, 2021, 119, .	3.3	5
6	Anomalous Impact of Surface Wettability on Leidenfrost Effect at Nanoscale. Chinese Physics Letters, 2021, 38, 094401.	3.3	3
7	Mass difference and polarization lead to low thermal conductivity of graphene-like carbon nitride (C3N). Carbon, 2020, 162, 202-208.	10.3	35
8	Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains*. Chinese Physics B, 2020, 29, 126303.	1.4	11
9	Hybrid Thermal Transport Characteristics of Doped Organic Semiconductor Poly(3,4-ethylenedioxythiophene):Tosylate. Journal of Physical Chemistry C, 2019, 123, 26735-26741.	3.1	35
10	Thermal conductivity of molybdenum disulfide nanotube from molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2019, 145, 118719.	4.8	25
11	Ultralow thermal conductance of the van der Waals interface between organic nanoribbons. Materials Today Physics, 2019, 11, 100139.	6.0	25
12	Unexpectedly high cross-plane thermoelectric performance of layered carbon nitrides. Journal of Materials Chemistry A, 2019, 7, 2114-2121.	10.3	44
13	Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2019, 137, 1241-1246.	4.8	43
14	A cross-interface model for thermal transport across the interface between overlapped nanoribbons. Physical Chemistry Chemical Physics, 2019, 21, 25072-25079.	2.8	20
15	Thermally-Responsive Hydrogels Poly(<i>N</i> -Isopropylacrylamide) as the Thermal Switch. Journal of Physical Chemistry C, 2019, 123, 31003-31010.	3.1	28
16	High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2018, 122, 13140-13147.	3.1	62
17	Phonon Thermal Transport Properties of Graphene Periodically Embedded with Four- and Eight-membered Rings: a Molecular Dynamics Study. ES Materials & Manufacturing, 2018, , .	1.9	5
18	A Review of Thermal Transport in Low-Dimensional Materials Under External Perturbation: Effect of Strain, Substrate, and Clustering. Nanoscale and Microscale Thermophysical Engineering, 2017, 21, 201-236.	2.6	38

#	Article	IF	CITATION
19	Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms. Journal of Heat Transfer, 2017, 139, .	2.1	14
20	Generalized Two-Temperature Model for Coupled Phonons in Nanosized Graphene. Nano Letters, 2017, 17, 5805-5810.	9.1	64
21	Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals. Nano Letters, 2015, 15, 5229-5234.	9.1	55
22	Nanoscale Topological Morphology Transition and Controllable Thermal Conductivity of Wrinkled Hexagonal Boron Nitride: Implications for Thermal Manipulation and Management. ACS Applied Nano Materials, 0, , .	5.0	3