Mm Azimatun Nur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471814/publications.pdf

Version: 2024-02-01

		1162367	1125271	
14	267	8	13	
papers	citations	h-index	g-index	
14	14	14	303	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization, 2019, 10, 2079-2097.	1.8	64
2	Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. Journal of Applied Phycology, 2019, 31, 111-122.	1.5	49
3	Sulfated exopolysaccharide production and nutrient removal by the marine diatom Phaeodactylum tricornutum growing on palm oil mill effluent. Journal of Applied Phycology, 2019, 31, 2335-2348.	1.5	28
4	Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME). International Journal of Renewable Energy Development, 2012, 1, 45-49.	1.2	23
5	Enhancement of C-phycocyanin productivity by Arthrospira platensis when growing on palm oil mill effluent in a two-stage semi-continuous cultivation mode. Journal of Applied Phycology, 2019, 31, 2855-2867.	1.5	23
6	Enhancement of Chlorella vulgaris Biomass Cultivated in POME Medium as Biofuel Feedstock under Mixotrophic Conditions. Journal of Engineering and Technological Sciences, 2015, 47, 487-497.	0.3	23
7	Influence of photodegradation on the removal of color and phenolic compounds from palm oil mill effluent by Arthrospira platensis. Journal of Applied Phycology, 2021, 33, 901-915.	1.5	17
8	Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel. Environmental Engineering Research, 2017, 22, 417-425.	1.5	9
9	Utilization of Coconut Milk Skim Effluent (CMSE) as Medium Growth for Spirulinaplatensis. Procedia Environmental Sciences, 2015, 23, 72-77.	1.3	7
10	Nutritional factors influence polyhydroxybutyrate in microalgae growing on palm oil mill effluent. Journal of Applied Phycology, 0, , 1.	1.5	7
11	Utilization of Agroindustry Wastewater as Growth Medium for Microalgae based Bioenergy Feedstock in Indonesia (an Overview). International Journal of Sustainable Future for Human Security, 2013, 1, 3-3.	0.1	6
12	Co-production of fucoxanthin and lipid from Indonesian diatom and green algae growing on palm oil mill effluent under mixotrophic condition. Biocatalysis and Agricultural Biotechnology, 2021, 38, 102228.	1.5	5
13	Co-production of polyhydroxybutyrate and C-phycocyanin from Arthrospira platensis growing on palm oil mill effluent by employing UV-C irradiation. Journal of Applied Phycology, 2022, 34, 1389-1396.	1.5	4
14	Utilization of Microalgae Cultivated in Palm Oil Mill Wastewater to Produce Lipid and Carbohydrate by Employing Microwave- Assisted Irradiation. Recent Innovations in Chemical Engineering, 2017, 9, 107-116.	0.2	2