Meng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471759/publications.pdf

Version: 2024-02-01

66343 69250 6,433 120 42 77 citations h-index g-index papers 147 147 147 7054 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Frontier luminous strategy of functional silica nanohybrids in sensing and bioimaging: From ACQ to AIE. Aggregate, 2022, 3, e121.	9.9	26
2	Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. Small, 2022, 18, e2107374.	10.0	6
3	Peptideâ€Engineered AIE Nanofibers with Excellent and Precisely Adjustable Antibacterial Activity. Small, 2022, 18, e2108030.	10.0	18
4	Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria (Small) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf
5	Effects of incineration leachate on anaerobic digestion of excess sludge and the related mechanisms. Journal of Environmental Management, 2022, 311, 114831.	7.8	6
6	Fluorescent <i>In Situ </i> 3D Visualization of Dynamic Corrosion Processes of Magnesium Alloys. ACS Applied Bio Materials, 2022, 5, 2340-2346.	4.6	2
7	High-performance tracking of bacterial extracellular vesicles in living systems using an aggregation-induced emission luminogen. Chemical Engineering Journal, 2022, 446, 136847.	12.7	4
8	Deep insights into the anaerobic co-digestion of waste activated sludge with concentrated leachate under different salinity stresses. Science of the Total Environment, 2022, 838, 155922.	8.0	20
9	Rapid and high-throughput testing of antifungal susceptibility using an AlEgen-based analytical system. Biomaterials, 2022, 287, 121618.	11.4	4
10	Fusion peptide engineered "statically-versatile―titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials, 2021, 264, 120446.	11.4	52
11	Red-to-NIR emissive radical cations derived from simple pyrroles. Materials Horizons, 2021, 8, 3082-3087.	12.2	22
12	Photo-triggered Zn2+ release for the regulation of zinc enzymes. Materials Chemistry Frontiers, 2021, 5, 1824-1829.	5.9	0
13	Electrospinning Superassembled Mesoporous AlEgen–Organosilica Frameworks Featuring Diversified Forms and Superstability for Wearable and Washable Solid-State Fluorescence Smart Sensors. Analytical Chemistry, 2021, 93, 2367-2376.	6.5	23
14	Pyxinol bearing amino acid residues: Easily achievable and promising modulators of P-glycoprotein-mediated multidrug resistance. European Journal of Medicinal Chemistry, 2021, 216, 113317.	5.5	11
15	Co-digestive performance of food waste and hydrothermal pretreated corn cob. Science of the Total Environment, 2021, 768, 144448.	8.0	18
16	Introducing intrinsic disorder reduces electrostatic steering in protein-protein interactions. Biophysical Journal, 2021, 120, 2998-3007.	0.5	3
17	Aged landfill leachate enhances anaerobic digestion of waste activated sludge. Journal of Environmental Management, 2021, 293, 112853.	7.8	26
18	Mechanism study of improving anaerobic co-digestion performance of waste activated sludge and food waste by Fe3O4. Journal of Environmental Management, 2021, 300, 113745.	7.8	18

#	Article	IF	CITATIONS
19	Visualizing phase transition of upper critical solution temperature (UCST) polymers with AIE. Science China Chemistry, 2021, 64, 403-407.	8.2	19
20	Adaptive Chirality of an Achiral Cage: Chirality Transfer, Induction, and Circularly Polarized Luminescence through Aqueous Host–Guest Complexation. CCS Chemistry, 2021, 3, 2749-2763.	7.8	44
21	Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nature Biomedical Engineering, 2021, 5, 1189-1201.	22.5	67
22	Hepatotoxicity Comparison of Crude and Licorice-Processed Euodiae Fructus in Rats With Stomach Excess-Cold Syndrome. Frontiers in Pharmacology, 2021, 12, 756276.	3.5	1
23	AIE-based cancer theranostics. Coordination Chemistry Reviews, 2020, 402, 213076.	18.8	127
24	Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials, 2020, 30, 1906950.	14.9	62
25	On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics, 2020, 10, 109-122.	10.0	68
26	Photoactivatable dihydroalkaloids for cancer cell imaging and chemotherapy with high spatiotemporal resolution. Materials Horizons, 2020, 7, 2696-2701.	12.2	24
27	Mitochondria-anchoring and AlE-active photosensitizer for self-monitored cholangiocarcinoma therapy. Materials Chemistry Frontiers, 2020, 4, 3201-3208.	5.9	17
28	Effects of hydrothermal pretreatment on the mono- and co-digestion of waste activated sludge and wheat straw. Science of the Total Environment, 2020, 732, 139312.	8.0	42
29	Design, synthesis and anti-inflammatory activity of 3-amino acid derivatives of ocotillol-type sapogenins. European Journal of Medicinal Chemistry, 2020, 202, 112507.	5.5	20
30	Mesoporous Silica Materials: Interfacial Assembly of Mesoporous Silicaâ€Based Optical Heterostructures for Sensing Applications (Adv. Funct. Mater. 9/2020). Advanced Functional Materials, 2020, 30, 2070057.	14.9	10
31	Synthesis and Structure–Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents. ACS Medicinal Chemistry Letters, 2020, 11, 457-463.	2.8	12
32	One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. Materials Chemistry Frontiers, 2020, 4, 957-964.	5.9	15
33	<p>Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 3023-3038.	6.7	9
34	AIEâ€Based Theranostic Probe for Sequential Imaging and Killing of Bacteria and Cancer Cells. Advanced Optical Materials, 2020, 8, 1902191.	7.3	31
35	One-pot quaternization of dual-responsive poly(vinyl alcohol) with AlEgens for pH-switchable imaging and killing of bacteria. Materials Chemistry Frontiers, 2020, 4, 2635-2645.	5.9	10
36	Photoluminescence Rainbow from Coelenteramideâ€"A Theoretical Study. Photochemistry and Photobiology, 2019, 95, 563-571.	2.5	9

#	Article	IF	Citations
37	AlEgen quantitatively monitoring the release of Ca2+ during swelling and degradation process in alginate hydrogels. Materials Science and Engineering C, 2019, 104, 109951.	7.3	17
38	AIE-Active and Thermoresponsive Alternating Polyurethanes of Bile Acid and PEG for Cell Imaging. ACS Applied Polymer Materials, 2019, 1, 2973-2980.	4.4	13
39	Stereotactic Photodynamic Therapy Using a Twoâ€Photon AIE Photosensitizer. Small, 2019, 15, e1905080.	10.0	35
40	A two-photon AlEgen for simultaneous dual-color imaging of atherosclerotic plaques. Materials Horizons, 2019, 6, 546-553.	12.2	49
41	TICT based fluorescent probe with excellent photostability for real-time and long-term imaging of lipid droplets. Tetrahedron Letters, 2019, 60, 1880-1884.	1.4	9
42	Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad – a QM/MM studyâ€. Photochemical and Photobiological Sciences, 2019, 18, 1823-1832.	2.9	6
43	Dual detection of bioaccumulated Hg ²⁺ based on luminescent bacteria and aggregation-induced emission. Chemical Communications, 2019, 55, 7458-7461.	4.1	17
44	An AIE-active theranostic probe for light-up detection of $A\hat{l}^2$ aggregates and protection of neuronal cells. Journal of Materials Chemistry B, 2019, 7, 2434-2441.	5.8	36
45	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pHâ€5peed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	14.9	66
46	Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Advances, 2019, 9, 29463-29473.	3.6	12
47	Aggregation-Induced Emission Probe for Light-Up and in Situ Detection of Calcium Ions at High Concentration. ACS Applied Materials & Emp; Interfaces, 2018, 10, 14410-14417.	8.0	58
48	Efficient Red/Nearâ€Infrared Fluorophores Based on Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> à6€²]dithiophene 1,1,5,5â€Tetraoxide for Targeted Photodynamic Therapy and In Vivo Twoâ€Photon Fluorescence Bioimaging. Advanced Functional Materials, 2018, 28, 1706945.	14.9	96
49	Aggregation-Induced Emission Probe for Study of the Bactericidal Mechanism of Antimicrobial Peptides. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11436-11442.	8.0	70
50	"Biowheel-Axle―Assembly of β-Cyclodextrin Fitted onto Bile Acid Units Linked by PEG Spacers through Inclusion Polymerization. Macromolecules, 2018, 51, 8455-8460.	4.8	9
51	Mitochondria―and Lysosomesâ€Targeted Synergistic Chemoâ€Photodynamic Therapy Associated with Selfâ€Monitoring by Dual Lightâ€Up Fluorescence. Advanced Functional Materials, 2018, 28, 1804362.	14.9	101
52	Functionalization of composite bacterial cellulose with C ₆₀ nanoparticles for wound dressing and cancer therapy. RSC Advances, 2018, 8, 18197-18203.	3.6	32
53	<i>In situ</i> generation of photoactivatable aggregation-induced emission probes for organelle-specific imaging. Chemical Science, 2018, 9, 5730-5735.	7.4	57
54	Light up detection of heparin based on aggregation-induced emission and synergistic counter ion displacement. Chemical Communications, 2017, 53, 4795-4798.	4.1	37

#	Article	IF	CITATIONS
55	Spontaneous Amino-yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific Poly (\hat{l}^2 -aminoacrylate)s. Journal of the American Chemical Society, 2017, 139, 5437-5443.	13.7	177
56	An easily accessible aggregation-induced emission probe for lipid droplet-specific imaging and movement tracking. Chemical Communications, 2017, 53, 921-924.	4.1	118
57	Photoactivatable aggregation-induced emission probes for lipid droplets-specific live cell imaging. Chemical Science, 2017, 8, 1763-1768.	7.4	128
58	Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sensors, 2017, 2, 1382-1399.	7.8	521
59	Aggregation-induced emission probes for cancer theranostics. Drug Discovery Today, 2017, 22, 1288-1294.	6.4	59
60	Introductory lecture: recent research progress on aggregation-induced emission. Faraday Discussions, 2017, 196, 9-30.	3.2	36
61	A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Materials Chemistry Frontiers, 2017, 1, 838-845.	5.9	132
62	Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chemical Communications, 2016, 52, 7288-7291.	4.1	146
63	Long-Term Tracking of the Osteogenic Differentiation of Mouse BMSCs by Aggregation-Induced Emission Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17878-17884.	8.0	36
64	Bright and biocompatible AIE polymeric nanoparticles prepared from miniemulsion for fluorescence cell imaging. Polymer Chemistry, 2016, 7, 5571-5578.	3.9	30
65	Polyannulation of internal alkynes and O-acyloxime derivatives to synthesize functional poly(isoquinoline)s. Polymer Chemistry, 2016, 7, 5436-5444.	3.9	17
66	Targeted imaging of EGFR overexpressed cancer cells by brightly fluorescent nanoparticles conjugated with cetuximab. Nanoscale, 2016, 8, 15027-15032.	5.6	70
67	Aggregationâ€Induced Emission Active Probe for Lightâ€Up Detection of Anionic Surfactants and Washâ€Free Bacterial Imaging. Chemistry - A European Journal, 2016, 22, 5107-5112.	3.3	40
68	Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission. ACS Sensors, 2016, 1, 179-184.	7.8	218
69	A fluorescent light-up platform with "AIE + ESIPT―characteristics for multi-target detection both in solution and on paper strip. Journal of Materials Chemistry B, 2015, 3, 1590-1596.	5.8	67
70	A Cell Apoptosis Probe Based on Fluorogen with Aggregation Induced Emission Characteristics. ACS Applied Materials & Diterfaces, 2015, 7, 4875-4882.	8.0	65
71	A fluorescent light-up probe based on AIE and ESIPT processes for \hat{l}^2 -galactosidase activity detection and visualization in living cells. Journal of Materials Chemistry B, 2015, 3, 9168-9172.	5.8	115
72	A Multifunctional Probe with Aggregationâ€Induced Emission Characteristics for Selective Fluorescence Imaging and Photodynamic Killing of Bacteria Over Mammalian Cells. Advanced Healthcare Materials, 2015, 4, 659-663.	7.6	85

#	Article	IF	Citations
73	Specific Lightâ€Up Bioprobe with Aggregationâ€Induced Emission and Activatable Photoactivity for the Targeted and Imageâ€Guided Photodynamic Ablation of Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 1780-1786.	13.8	461
74	Rhodium-Catalyzed Oxidative Polycoupling of Phenylpyrazole and Internal Diynes: A New Polymerization Route for Atom-Economical Synthesis of Poly(pyrazolylnaphthalene)s. Materials Research Society Symposia Proceedings, 2014, 1613, 3-15.	0.1	0
75	Mitochondriaâ€Targeted Cancer Therapy Using a Lightâ€Up Probe with Aggregationâ€Inducedâ€Emission Characteristics. Angewandte Chemie - International Edition, 2014, 53, 14225-14229.	13.8	361
76	Distinct optical and kinetic responses from E/Z isomers of caspase probes with aggregation-induced emission characteristics. Journal of Materials Chemistry B, 2014, 2, 4363-4370.	5.8	47
77	Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. Journal of Materials Chemistry B, 2014, 2, 231-238.	5.8	69
78	Periodic mesoporous organosilicas for ultra-high selective copper(<scp>ii</scp>) detection and sensing mechanism. Journal of Materials Chemistry A, 2014, 2, 1493-1501.	10.3	55
79	A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications, 2014, 50, 8312-8315.	4.1	100
80	A fluorescent light-up probe with "AIE + ESIPT―characteristics for specific detection of lysosomal esterase. Journal of Materials Chemistry B, 2014, 2, 3438-3442.	5.8	185
81	Copper-Catalyzed Polycoupling of Diynes, Primary Amines, and Aldehydes: A New One-Pot Multicomponent Polymerization Tool to Functional Polymers. Macromolecules, 2014, 47, 4908-4919.	4.8	89
82	Synthesis of \hat{l}_{\pm} -iodoketals from methyl ketones via sustainable and orthogonal tandem catalysis. Organic and Biomolecular Chemistry, 2013, 11, 1226.	2.8	17
83	Highly sensitive and selective detection of Cu(<scp>ii</scp>) by periodic mesoporous rhodamine derivative-based organosilicas with crystal-like pore walls. Journal of Materials Chemistry A, 2013, 1, 1319-1325.	10.3	30
84	A new route to construct 1,2-dihydroquinoxaline and 1,4-benzoxazine derivatives stereoselectively and its application to novel pyrazolo $[1,5-\hat{l}\pm]$ quinoxaline oxides. Tetrahedron, 2013, 69, 1849-1856.	1.9	15
85	Auto-tandem catalysis: synthesis of 4H-pyrido[1,2-a]pyrimidin-4-ones via copper-catalyzed aza-Michael addition–aerobic dehydrogenation–intramolecular amidation. Chemical Communications, 2013, 49, 1729.	4.1	44
86	Fabrication of Chitosan Nanoparticles with Aggregationâ€Induced Emission Characteristics and Their Applications in Longâ€Ierm Live Cell Imaging. Macromolecular Rapid Communications, 2013, 34, 767-771.	3.9	63
87	A new route to functional polymers: atom-economical synthesis of poly(pyrazolylnaphthalene)s by rhodium-catalyzed oxidative polycoupling of phenylpyrazole and internal diynes. Polymer Chemistry, 2013, 4, 2841.	3.9	39
88	A fluorescence-switchable luminogen in the solid state: a sensitive and selective sensor for the fast "turn-on―detection of primary amine gas. Chemical Communications, 2013, 49, 4848.	4.1	85
89	Stoichiometric imbalance-promoted synthesis of polymers containing highly substituted naphthalenes: rhodium-catalyzed oxidative polycoupling of arylboronic acids and internal diynes. Polymer Chemistry, 2013, 4, 1372-1380.	3.9	34
90	Synthesis of Tetrasubstituted Unsymmetrical 1,4-Enediones via Copper-Promoted Autotandem Catalysis and Air As the Oxidant. Journal of Organic Chemistry, 2013, 78, 5418-5426.	3.2	34

#	Article	IF	Citations
91	Target-oriented synthesis: miscellaneous synthetic routes to access 1,4-enediones through the coupling of 1,3-dicarbonyl compounds with multiform substrates. Tetrahedron, 2013, 69, 6392-6398.	1.9	27
92	Association of Genetic Variants in the Adiponectin Gene with Metabolic Syndrome: A Case-Control Study and a Systematic Meta-Analysis in the Chinese Population. PLoS ONE, 2013, 8, e58412.	2.5	25
93	A Novel and Highly Regioselective Route to Construct Methylthio-Substituted Pyridazines from Aryl Methyl Ketones at Room Temperature. Synlett, 2012, 23, 2137-2141.	1.8	10
94	Synthesis of trisubstituted isoxazoles via in situ trapping strategy from $\hat{l}\pm$ -nitro carbonyl compounds and methyl ketones or terminal aryl alkenes. Tetrahedron, 2012, 68, 6257-6262.	1.9	30
95	Convergent domino synthesis of 1,2,3-triaroylindolizines from methyl ketones and pyridines via self-division of labor strategy. Tetrahedron, 2012, 68, 7338-7344.	1.9	38
96	Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chemical Communications, 2012, 48, 8637.	4.1	205
97	Efficient Polymerization of Azide and Active Internal Alkynes. Macromolecular Rapid Communications, 2012, 33, 1356-1361.	3.9	47
98	Substrate-controlled and highly stereoselective synthesis of 2-aminobut-2-ene-1, 4-diones. Tetrahedron, 2012, 68, 3828-3834.	1.9	12
99	Synthesis and Characterization of Iron Particles Hosted in Porous Alumina. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 836-840.	3.7	3
100	A facile synthesis of indole–furan conjugates via integration of convergent and linear domino reactions. Tetrahedron, 2011, 67, 5142-5149.	1.9	40
101	One-Pot Synthesis of Oxacalixarene Derivatives with Tunable Cavity Size Using Miscellaneous Linkers. Synlett, 2011, 2011, 52-56.	1.8	2
102	Notice of Retraction: ABCC8 and Type 2 Diabetes: A Global Meta-Analysis. , 2011, , .		0
103	An Eficient One-Pot Synthesis of Macrocyclic Compounds Possessing Propargylamine Skeletons via Mannich Reaction. Synlett, 2011, 2011, 3046-3052.	1.8	5
104	Colorimetric Fluoride Sensor Based on a Bisthiourea Functionalized Molecular Clip. Synlett, 2010, 2010, 2553-2556.	1.8	1
105	Formation of Unsymmetrical 1,4-Enediones via A Focusing Domino Strategy: Cross-Coupling of 1,3-Dicarbonyl Compounds and Methyl Ketones or Terminal Aryl Alkenes. Organic Letters, 2010, 12, 1856-1859.	4.6	73
106	An Efficient Synthesis of Hydantoins via Sustainable Integration of Coupled Domino Processes. Organic Letters, 2010, 12, 4026-4029.	4.6	107
107	Nanotubular non-covalent macrocycle within non-covalent macrocycle assembly: (MeOH)12 encapsulated in a molecular clip cyclododecamer. Chemical Communications, 2010, 46, 4508.	4.1	8
108	Synthesis of Novel Molecular Clips via Click Chemistry Based on Diethoxy carbonyl Glycoluril. Synlett, 2009, 2009, 315-319.	1.8	2

#	Article	IF	CITATIONS
109	Thioglycoluril as a Novel Organocatalyst: Rapid and Efficient $\hat{l}\pm$ -Monobromination of 1,3-Dicarbonyl Compounds. Synlett, 2009, 2009, 1445-1448.	1.8	2
110	Sensor for Nitrophenol Based on a Fluorescent Molecular Clip. Organic Letters, 2009, 11, 2603-2606.	4.6	27
111	A concise and efficient way to synthesize polyenic diones directly from $\hat{l}\pm,\hat{l}^2$ -unsaturated methyl ketones. Tetrahedron, 2009, 65, 6047-6049.	1.9	22
112	Novel and Direct Transformation of Methyl Ketones or Carbinols to Primary Amides by Employing Aqueous Ammonia. Organic Letters, 2009, 11, 3810-3813.	4.6	111
113	Supramolecular Rhombic Grids Formed from Bimolecular Building Blocks. Journal of the American Chemical Society, 2009, 131, 11695-11697.	13.7	27
114	Two-dimensional hydrogen-bonded networks in two novel glycoluril derivatives. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, 069-072.	0.4	4
115	A New Facile Approach to the Synthesis of 3-Methylthio-Substituted Furans, Pyrroles, Thiophenes, and Related Derivatives. Journal of Organic Chemistry, 2008, 73, 3377-3383.	3.2	141
116	Tetrameric molecular bowl assembled from glycoluril building blocks. Chemical Communications, 2008, , 3133.	4.1	13
117	Self-Assembly of Discrete and Polymeric Metal-Organic Frameworks via a Semirigid Glycoluril-Based Molecular Clip. Crystal Growth and Design, 2008, 8, 1645-1653.	3.0	15
118	An Efficient Method for the Selective Iodination of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones. Synthesis, 2008, 2008, 3675-3681.	2.3	18
119	Direct Conversion of Aromatic Ketones to Arenecarboxylic Esters via Carbon–Carbon Bond-Cleavage Reactions. Bulletin of the Chemical Society of Japan, 2008, 81, 369-372.	3.2	16
120	X-Ray structures and binding properties of molecular clips based on diethoxycarbonyl glycoluril. Canadian Journal of Chemistry, 2007, 85, 586-591.	1.1	4