Rafael Trocoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471704/publications.pdf Version: 2024-02-01

PAFAFI TROCOLL

#	Article	IF	CITATIONS
1	An Aqueous Zincâ€lon Battery Based on Copper Hexacyanoferrate. ChemSusChem, 2015, 8, 481-485.	6.8	607
2	Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Advanced Materials, 2020, 32, e1905440.	21.0	198
3	An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta, 2016, 222, 74-83.	5.2	189
4	Selectivity of a Lithiumâ€Recovery Process Based on LiFePO ₄ . Chemistry - A European Journal, 2014, 20, 9888-9891.	3.3	101
5	Optimized Lithium Recovery from Brines by using an Electrochemical Ionâ€Pumping Process Based on λâ€MnO ₂ and Nickel Hexacyanoferrate. ChemElectroChem, 2017, 4, 143-149.	3.4	92
6	Nickel Hexacyanoferrate as Suitable Alternative to Ag for Electrochemical Lithium Recovery. ChemSusChem, 2015, 8, 2514-2519.	6.8	90
7	Phase transformation of copper hexacyanoferrate (KCuFe(CN)6) during zinc insertion: Effect of co-ion intercalation. Journal of Power Sources, 2018, 400, 167-171.	7.8	80
8	Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries. Electrochemistry Communications, 2016, 68, 1-4.	4.7	71
9	Ultrafast Dischargeable LiMn ₂ O ₄ Thin-Film Electrodes with Pseudocapacitive Properties for Microbatteries. ACS Applied Materials & Interfaces, 2017, 9, 5295-5301.	8.0	50
10	Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells. Electrochimica Acta, 2010, 55, 3075-3082.	5.2	40
11	Insights into the electrochemical activity of nanosized α-LiFeO2. Electrochimica Acta, 2008, 53, 6366-6371.	5.2	39
12	Lithium recovery by means of electrochemical ion pumping: a comparison between salt capturing and selective exchange. Journal of Physics Condensed Matter, 2016, 28, 114005.	1.8	35
13	Effect of C and Au additives produced by simple coaters on the surface and the electrochemical properties of nanosized LiFePO4. Journal of Electroanalytical Chemistry, 2009, 631, 29-35.	3.8	33
14	Capturing Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) from contaminated water sources by electro-deposition on hydrotalcite-like compounds. Physical Chemistry Chemical Physics, 2016, 18, 1838-1845.	2.8	32
15	Improving the electrochemical properties of nanosized LiFePO4-based electrode by boron doping. Electrochimica Acta, 2014, 135, 558-567.	5.2	29
16	High Specific Power Dual-Metal-Ion Rechargeable Microbatteries Based on LiMn ₂ O ₄ and Zinc for Miniaturized Applications. ACS Applied Materials & Interfaces, 2017, 9, 32713-32719.	8.0	27
17	Self-discharge in Li-ion aqueous batteries: A case study on LiMn2O4. Electrochimica Acta, 2021, 373, 137847.	5.2	22
18	Synthesis of nanostructured LiMn ₂ O ₄ thin films by glancing angle deposition for Li-ion battery applications. Nanotechnology, 2016, 27, 455402.	2.6	20

RAFAEL TROCOLI

#	Article	IF	CITATIONS
19	Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 28381-28387.	2.8	20
20	On the limited electroactivity of Li2NiTiO4 nanoparticles in lithium batteries. Electrochimica Acta, 2013, 100, 93-100.	5.2	19
21	Electrochemical Characterization of Gel Electrolytes for Aqueous Lithiumâ€lon Batteries. ChemPlusChem, 2014, 79, 1507-1511.	2.8	19
22	An innovative multi-layer pulsed laser deposition approach for LiMn2O4 thin film cathodes. Thin Solid Films, 2018, 648, 108-112.	1.8	18
23	Effect of Pt and Au current collector in LiMn ₂ O ₄ thin film for micro-batteries. Nanotechnology, 2018, 29, 035404.	2.6	16
24	Electrochemical activity of rock-salt-structured LiFeO2/Li4/3Ti2/3O2 nanocomposites in lithium cells. Journal of Nanoparticle Research, 2008, 10, 217-226.	1.9	13
25	Dynamic impedance spectroscopy of LiMn2O4 thin films made by multi-layer pulsed laser deposition. Electrochimica Acta, 2020, 331, 135385.	5.2	12
26	Operando probing of Li-insertion into LiMn ₂ O ₄ cathodes by spectroscopic ellipsometry. Journal of Materials Chemistry A, 2020, 8, 11538-11544.	10.3	10
27	Influence of the lithium salt electrolyte on the electrochemical performance of copper/LiFePO4 composites. Electrochimica Acta, 2012, 61, 57-63.	5.2	9
28	A LiFePO[sub 4]-Based Cell with Li[sub x](Mg) as Lithium Storage Negative Electrode. Electrochemical and Solid-State Letters, 2009, 12, A145.	2.2	7
29	The injectable battery. A conceptually new strategy in pursue of a sustainable and circular battery model. Journal of Power Sources, 2020, 480, 228839.	7.8	7
30	Insights on the electrode/electrolyte interfaces in LiFePO4 based cells with LiAl(Al) and Li(Mg) anodes. Journal of Electroanalytical Chemistry, 2014, 732, 53-60.	3.8	6
31	On the potential use of carbon-free mesoporous precursors of LiFePO4 for lithium-ion batteries electrode. Solid State Ionics, 2014, 255, 30-38.	2.7	5
32	The counter electrode in electrochemical lithium recovery. Current Opinion in Electrochemistry, 2021, 30, 100778.	4.8	4