
Reddicherla Umapathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples. Journal of Hazardous Materials, 2022, 421, 126775.	6.5	61
2	Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science and Technology, 2022, 119, 69-89.	7.8	144
3	Emergence of high-performing and ultra-fast 2D-graphene nano-biosensing system. Materials Letters, 2022, 308, 131241.	1.3	18
4	Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews, 2022, 453, 214305.	9.5	212
5	An Overview on Single-Cell Technology for Hepatocellular Carcinoma Diagnosis. International Journal of Molecular Sciences, 2022, 23, 1402.	1.8	10
6	Polymer-ceramic based solid composite membranes as potential electrolytes for the lithium batteries. , 2022, , 181-200.		0
7	Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128619.	2.3	4
8	Effect of Taylor vortex wavelength on polymorphic crystallization of L-histidine. Journal of Molecular Liquids, 2022, 353, 118768.	2.3	2
9	Tunnelling the structural insights between poly(N-isopropylacrylamide) and imidazolium sulfate ionic liquids. Journal of Molecular Liquids, 2022, 360, 119404.	2.3	4
10	Waste-to-energy: Utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. Journal of Cleaner Production, 2022, 363, 132532.	4.6	49
11	Sowing kernels for food safety: Importance of rapid onâ€site detction of pesticide residues in agricultural foods. Food Frontiers, 2022, 3, 666-676.	3.7	29
12	Scalable preparation of ultrathin porous polyurethane membrane-based triboelectric nanogenerator for mechanical energy harvesting. EXPRESS Polymer Letters, 2021, 15, 1019-1031.	1.1	14
13	Biological Stimuli-Induced Phase Transition of a Synthesized Block Copolymer: Preferential Interactions between PNIPAM- <i>b</i> -PNVCL and Heme Proteins. Langmuir, 2021, 37, 1682-1696.	1.6	20
14	Fabrication of Carbon Disulfide Added Colloidal Gold Colorimetric Sensor for the Rapid and On-Site Detection of Biogenic Amines. Sensors, 2021, 21, 1738.	2.1	12
15	Pd–Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. Journal of Hazardous Materials, 2021, 408, 124914.	6.5	57
16	Simple synthesis of a clew-like tungsten carbide nanocomposite decorated with gold nanoparticles for the ultrasensitive detection of tert-butylhydroquinone. Food Chemistry, 2021, 348, 128936.	4.2	12
17	An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sensors and Actuators B: Chemical, 2021, 344, 130202.	4.0	51
18	Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges, Coordination Chemistry Reviews, 2021, 446, 214061.	9.5	159

#	Article	IF	CITATIONS
19	Multilayered PVDF-HFP Porous Separator via Phase Separation and Selective Solvent Etching for High Voltage Lithium-Ion Batteries. Membranes, 2021, 11, 41.	1.4	16
20	Tweaking Behavior of Hydrogen Bond Donor in Choline Chloride-Based Deep Eutectic Solvents for Regulating the Phase Transition of Poly(<i>N</i> -vinylcaprolactam): A Sustainable Medium for an Early Hydrophobic Collapse. ACS Sustainable Chemistry and Engineering, 2021, 9, 14335-14344.	3.2	14
21	Unravelling the interactions between biomedical thermoresponsive polymer and biocompatible ionic liquids. Journal of Molecular Liquids, 2020, 300, 112362.	2.3	10
22	Hierarchical dense Niâ^'Co layered double hydroxide supported carbon nanofibers for the electrochemical determination of metronidazole in biological samples. Electrochimica Acta, 2020, 354, 136723.	2.6	36
23	Effect of temperature on molecular interactions between tri(butyl)methylphosphonium methylsulfate and furfural. Journal of Chemical Thermodynamics, 2020, 149, 106150.	1.0	5
24	Enhanced anticancer activity of half-sandwich Ru(II)-p-cymene complex bearing heterocyclic hydrazone ligand. Inorganic Chemistry Communication, 2020, 119, 108054.	1.8	23
25	Controllable synthesis of bottlebrush-like ZnO nanowires decorated on carbon nanofibers as an efficient electrocatalyst for the highly sensitive detection of silymarin in biological samples. Sensors and Actuators B: Chemical, 2020, 321, 128544.	4.0	16
26	How does bovine serum albumin sustain in saccharomate® derived from pine tree biomass?. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110975.	2.5	1
27	A simple strategy for the synthesis of flower-like textures of Au-ZnO anchored carbon nanocomposite towards the highâ€performance electrochemical sensing of sunset yellow. Food Chemistry, 2020, 323, 126848.	4.2	24
28	Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. Journal of Hazardous Materials, 2020, 399, 122868.	6.5	49
29	Quantifying the influence of ionic liquid on the phase behaviour of a biomedical thermoresponsive polymer: A biophysical experimental approach. Reactive and Functional Polymers, 2019, 143, 104327.	2.0	4
30	Profiling the molecular interactions between a promising thermoresponsive polymer and ionic liquid: A biophysical outlook. Journal of Molecular Liquids, 2019, 278, 716-721.	2.3	7
31	Influence of biological stimuli on the phase behaviour of a biomedical thermoresponsive polymer: A comparative investigation of hemeproteins. Journal of Colloid and Interface Science, 2019, 541, 1-11.	5.0	22
32	Investigation of temperature and composition dependence of molecular interactions between phosphonium-based ionic liquid + N, N-dimethylformamide: A study of thermophysical properties. Journal of Molecular Liquids, 2019, 291, 110987.	2.3	5
33	Effect of various seed metals on uniformity of Ag layer formed by atmospheric plasma reduction on polyethylene terephthalate substrate: An application to electromagnetic interference shielding effectiveness. Thin Solid Films, 2019, 676, 75-86.	0.8	11
34	How do biological stimuli modulate conformational changes of biomedical thermoresponsive polymer?. Colloids and Surfaces B: Biointerfaces, 2019, 178, 479-487.	2.5	16
35	Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. International Journal of Biological Macromolecules, 2019, 129, 750-777.	3.6	110
36	Influence of additives on thermoresponsive polymers in aqueous media: a case study of poly(<i>N</i> -isopropylacrylamide). Physical Chemistry Chemical Physics, 2018, 20, 9717-9744.	1.3	44

#	Article	IF	CITATIONS
37	Assessing the efficiency of imidazolium-based ionic liquids on the phase behavior of a synthetic biomedical thermoresponsive polymer. Journal of Colloid and Interface Science, 2018, 511, 174-183.	5.0	36
38	How Does a Smart Polymer Respond to Imidazolium-Based Ionic Liquids?. ACS Sustainable Chemistry and Engineering, 2018, 6, 1400-1410.	3.2	15
39	Comprehensive adsorption characteristics of a newly synthesized and sustainable anti-corrosion catalyst on mild steel surface exposed to a highly corrosive electrolytic solution. Journal of Molecular Liquids, 2018, 268, 37-48.	2.3	7
40	Comprehensive Computational and Experimental Analysis of Biomaterial toward the Behavior of Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and Hydrophobic Interactions. Journal of Physical Chemistry B, 2017, 121, 4909-4922.	1.2	17
41	Influence of temperature on thermophysical properties of tri(butyl)methylphosphonium methyl sulfate + N -methyl-2-pyrrolidone. Journal of Molecular Liquids, 2017, 242, 375-381.	2.3	7
42	The influence of various alkylammonium-based ionic liquids on the hydration state of temperature-responsive polymer. Journal of Molecular Liquids, 2017, 225, 186-194.	2.3	9
43	Thermo-responsive triblock copolymer phase transition behaviour in imidazolium-based ionic liquids: Role of the effect of alkyl chain length of cations. Journal of Colloid and Interface Science, 2017, 485, 183-191.	5.0	29
44	Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Physical Chemistry Chemical Physics, 2016, 18, 8342-8351.	1.3	32
45	A study of the conformational changes of β-lactoglobulin in the vicinity of critical point of binary mixed solvents. New Journal of Chemistry, 2016, 40, 1747-1755.	1.4	3
46	Solution Behavior of Triblock Copolymer in the Presence of Ionic Liquids: A Comparative Study of Two Ionic Liquids Possessing Different Cations with Same Anion. ACS Sustainable Chemistry and Engineering, 2016, 4, 2412-2421.	3.2	35
47	The biological stimuli for governing the phase transition temperature of the "smart―polymer PNIPAM in water. Colloids and Surfaces B: Biointerfaces, 2015, 135, 588-595.	2.5	37
48	A green approach to offset the perturbation action of 1-butyl-3-methylimidazolium iodide on α-chymotrypsin. Physical Chemistry Chemical Physics, 2015, 17, 184-190.	1.3	35
49	Interactions of ionic liquids with hydration layer of poly(N-isopropylacrylamide): comprehensive analysis of biophysical techniques results. Physical Chemistry Chemical Physics, 2014, 16, 10708-10718.	1.3	39
50	Thermophysical Properties of Aqueous Solution of Ammonium-Based Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 5971-5982.	1.2	64