James C Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471453/publications.pdf

Version: 2024-02-01

3911 3525 36,786 560 90 177 citations h-index g-index papers 587 587 587 24423 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation, 2016, 133, 2404-2412.	1.6	1,335
2	Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. American Journal of Cardiology, 2002, 90, 29-34.	0.7	1,259
3	Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). Journal of Cardiovascular Magnetic Resonance. 2017. 19. 75.	1.6	1,074
4	Differentiation of Heart Failure Related to Dilated Cardiomyopathy and Coronary Artery Disease Using Gadolinium-Enhanced Cardiovascular Magnetic Resonance. Circulation, 2003, 108, 54-59.	1.6	1,049
5	Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 92.	1.6	864
6	Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation, 2005, 111, 186-193.	1.6	863
7	Equilibrium Contrast Cardiovascular Magnetic Resonance for the Measurement of Diffuse Myocardial Fibrosis. Circulation, 2010, 122, 138-144.	1.6	793
8	Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. European Heart Journal, 2016, 37, 1850-1858.	1.0	757
9	Prognostic Significance of Myocardial Fibrosis in Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2010, 56, 867-874.	1.2	720
10	Toward clinical risk assessment inhypertrophic cardiomyopathy withgadolinium cardiovascular magnetic resonance. Journal of the American College of Cardiology, 2003, 41, 1561-1567.	1.2	707
11	Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. American Heart Journal, 2004, 147, 218-223.	1.2	686
12	The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2004, 43, 2260-2264.	1.2	628
13	Ventricular Fibrosis Suggested by Cardiovascular Magnetic Resonance in Adults With Repaired Tetralogy of Fallot and Its Relationship to Adverse Markers of Clinical Outcome. Circulation, 2006, 113, 405-413.	1.6	536
14	Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 2013, 6, 488-497.	2.3	517
15	Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2011, 4, 150-156.	2.3	514
16	Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging. Journal of the American College of Cardiology, 2002, 40, 2044-2052.	1.2	506
17	Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation, 2015, 132, 1570-1579.	1.6	442
18	Identification and Assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Noncontrast Myocardial T1 Mapping. Circulation: Cardiovascular Imaging, 2013, 6, 392-398.	1.3	399

#	Article	IF	CITATIONS
19	Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease Evidence for a disease specific abnormality of the myocardial interstitium. European Heart Journal, 2003, 24, 2151-2155.	1.0	397
20	Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart, 2013, 99, 932-937.	1.2	390
21	Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet, The, 2021, 397, 1057-1058.	6.3	360
22	Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. British Heart Journal, 2004, 90, 645-649.	2.2	350
23	Native T1 Mapping in Transthyretin Amyloidosis. JACC: Cardiovascular Imaging, 2014, 7, 157-165.	2.3	339
24	Comprehensive Validation of Cardiovascular Magnetic Resonance Techniques for the Assessment of Myocardial Extracellular Volume. Circulation: Cardiovascular Imaging, 2013, 6, 373-383.	1.3	324
25	T1 mapping and survival in systemic light-chain amyloidosis. European Heart Journal, 2015, 36, 244-251.	1.0	310
26	Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component. New England Journal of Medicine, 2015, 373, 1106-1114.	13.9	304
27	COVID-19: PCR screening of asymptomatic health-care workers at London hospital. Lancet, The, 2020, 395, 1608-1610.	6.3	295
28	Magnetic Resonance in TransthyretinÂCardiac Amyloidosis. Journal of the American College of Cardiology, 2017, 70, 466-477.	1.2	290
29	Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile. Circulation, 2017, 136, 126-137.	1.6	286
30	Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science, 2021, 372, 1418-1423.	6.0	286
31	Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature, 2022, 601, 110-117.	13.7	280
32	Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart) Tj ETQq0 0 0 rgB Journal of Cardiology, 2002, 85, 195-197.	BT /Overloc 0.8	ck 10 Tf 50 2 277
33	Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart, 2012, 98, 1436-1441.	1.2	276
34	Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. European Heart Journal, 2021, 42, 1866-1878.	1.0	274
35	Breath-hold FLASH and FISP Cardiovascular MR Imaging: Left Ventricular Volume Differences and Reproducibility. Radiology, 2002, 223, 789-797.	3.6	270
36	Reverse Myocardial Remodeling FollowingÂValve Replacement in PatientsÂWith Aortic Stenosis. Journal of the American College of Cardiology, 2018, 71, 860-871.	1.2	266

#	Article	IF	Citations
37	Quantification of Myocardial Extracellular Volume Fraction in Systemic AL Amyloidosis. Circulation: Cardiovascular Imaging, 2013, 6, 34-39.	1.3	261
38	Late Gadolinium Enhancement Cardiovascular Magnetic Resonance of the Systemic Right Ventricle in Adults With Previous Atrial Redirection Surgery for Transposition of the Great Arteries. Circulation, 2005, 111, 2091-2098.	1.6	260
39	T1 Mapping for Myocardial Extracellular Volume Measurement by CMR. JACC: Cardiovascular Imaging, 2013, 6, 955-962.	2.3	245
40	Immune boosting by B.1.1.529 $\$ (Omicron) depends on previous SARS-CoV-2 exposure. Science, 2022, 377, .	6.0	241
41	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of $2\hat{a}\in$ evidence base and standardized methods of imaging. Journal of Nuclear Cardiology, 2019, 26, 2065-2123.	1.4	230
42	Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines, 2015, 3, 662-685.	2.1	225
43	Normal variation of magnetic resonance T1 relaxation times in the human population at $1.5\mathrm{T}$ using ShMOLLI. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 13.	1.6	216
44	Occult Transthyretin Cardiac Amyloid in Severe Calcific Aortic Stenosis. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	210
45	Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 87.	1.6	207
46	Updates in Cardiac Amyloidosis: A Review. Journal of the American Heart Association, 2012, 1, e000364.	1.6	204
47	Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis – a clinical study using myocardial T1-mapping and extracellular volume quantification. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 21.	1.6	200
48	Microfluidic alignment of collagen fibers for in vitro cell culture. Biomedical Microdevices, 2006, 8, 35-41.	1.4	199
49	Remote Ischemic Conditioning Reduces Myocardial Infarct Size and Edema in Patients With ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2015, 8, 178-188.	1.1	199
50	Clinical significance of respiratory bronchiolitis on open lung biopsy and its relationship to smoking related interstitial lung disease. Thorax, 1999, 54, 1009-1014.	2.7	196
51	Prevalence and Outcomes of Concomitant Aortic Stenosis and CardiacÂAmyloidosis. Journal of the American College of Cardiology, 2021, 77, 128-139.	1.2	187
52	Myocardial Scar and Mortality in Severe Aortic Stenosis. Circulation, 2018, 138, 1935-1947.	1.6	181
53	Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. European Heart Journal, 2018, 39, 699-709.	1.0	178
54	The Relationship of Left Ventricular Trabeculation to Ventricular Function and Structure Over a 9.5-Year Follow-Up. Journal of the American College of Cardiology, 2014, 64, 1971-1980.	1.2	176

#	Article	IF	CITATIONS
55	Myocardial Fibrosis Quantified by Extracellular Volume Is Associated With Subsequent Hospitalization for Heart Failure, Death, or Both Across the Spectrum of Ejection Fraction and Heart Failure Stage. Journal of the American Heart Association, 2015, 4, .	1.6	174
56	Native T1 and Extracellular Volume inÂTransthyretin Amyloidosis. JACC: Cardiovascular Imaging, 2019, 12, 810-819.	2.3	172
57	Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Science Immunology, 2020, 5, .	5.6	172
58	The Pathologic Basis of Q-Wave and Non-Q-Wave Myocardial Infarction. Journal of the American College of Cardiology, 2004, 44, 554-560.	1.2	167
59	Quantification of left ventricular trabeculae using fractal analysis. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 36.	1.6	167
60	The Histological Basis of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in a Patient with Anderson-Fabry Disease. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 479-482.	1.6	163
61	Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 2012, 13, 819-826.	0.5	161
62	Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 99.	1.6	154
63	Differential Myocyte Responses in Patients with Cardiac Transthyretin Amyloidosis and Light-Chain Amyloidosis: A Cardiac MR Imaging Study. Radiology, 2015, 277, 388-397.	3.6	146
64	Myocardial Edema and Prognosis inÂAmyloidosis. Journal of the American College of Cardiology, 2018, 71, 2919-2931.	1.2	145
65	Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart, 2014, 100, 1851-1858.	1.2	144
66	Extracellular Myocardial Volume in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2020, 75, 304-316.	1.2	141
67	Measurement of Myocardial Extracellular Volume Fraction by Using Equilibrium Contrast-enhanced CT: Validation against Histologic Findings. Radiology, 2013, 269, 396-403.	3.6	140
68	Automated Pixel-Wise Quantitative Myocardial Perfusion Mapping by CMRÂtoÂDetect Obstructive Coronary Artery Disease and Coronary Microvascular Dysfunction. JACC: Cardiovascular Imaging, 2019, 12, 1958-1969.	2.3	140
69	Noncontrast myocardial $<$ i> $>$ T $<$ i> $<$ sub> $>$ 1 $<$ sub> mapping using cardiovascular magnetic resonance for iron overload. Journal of Magnetic Resonance Imaging, 2015, 41, 1505-1511.	1.9	139
70	A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance—the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 58.	1.6	134
71	Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathologyÂin patients referred for transcatheter aortic valve implantation. European Heart Journal, 2020, 41, 2759-2767.	1.0	128
72	Automatic Measurement of the MyocardialÂInterstitium. JACC: Cardiovascular Imaging, 2016, 9, 54-63.	2.3	127

#	Article	IF	CITATIONS
73	COVID-19. Circulation, 2020, 142, 1120-1122.	1.6	126
74	Noncontrast Magnetic Resonance for theÂDiagnosis of Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 2020, 13, 69-80.	2.3	125
75	Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2004, 44, 2315-2325.	1.2	124
76	Cardiovascular magnetic resonance for amyloidosis. Heart Failure Reviews, 2015, 20, 133-144.	1.7	120
77	Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of Reperfused ST-Segment–Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling. Circulation: Cardiovascular Imaging, 2016, 9, .	1.3	120
78	Lamin and the heart. Heart, 2018, 104, 468-479.	1.2	113
79	Cardiac Structural and Functional Consequences of Amyloid Deposition byÂCardiac Magnetic Resonance andÂEchocardiography and TheirÂPrognosticÂRoles. JACC: Cardiovascular Imaging, 2019, 12, 823-833.	2.3	113
80	Reduction in CMR Derived Extracellular Volume With Patisiran Indicates Cardiac Amyloid Regression. JACC: Cardiovascular Imaging, 2021, 14, 189-199.	2.3	113
81	Prevalence of Cardiac Amyloidosis in Patients Referred for Transcatheter Aortic Valve Replacement. Journal of the American College of Cardiology, 2018, 71, 463-464.	1.2	111
82	Prospective Case-Control Study of Cardiovascular Abnormalities 6ÂMonthsÂFollowing Mild COVID-19 inÂHealthcare Workers. JACC: Cardiovascular Imaging, 2021, 14, 2155-2166.	2.3	111
83	Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nature Reviews Cardiology, 2016, 13, 651-675.	6.1	110
84	Cardiac Involvement in Fabry Disease. Journal of the American College of Cardiology, 2021, 77, 922-936.	1.2	109
85	Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. Journal of Cardiovascular Computed Tomography, 2015, 9, 585-592.	0.7	108
86	Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis. European Heart Journal, 2020, 41, 1439-1447.	1.0	108
87	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Journal of Cardiac Failure, 2019, 25, e1-e39.	0.7	107
88	Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host and Microbe, 2021, 29, 1611-1619.e5.	5.1	106
89	The Prognostic Significance of Quantitative Myocardial Perfusion: An Artificial Intelligence Based Approach Using Perfusion Mapping. Circulation, 2020, 141, 1282-1291.	1.6	100
90	T1 mapping in cardiac MRI. Heart Failure Reviews, 2017, 22, 415-430.	1.7	97

#	Article	IF	Citations
91	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2—Diagnostic criteria and appropriate utilization. Journal of Nuclear Cardiology, 2020, 27, 659-673.	1.4	97
92	Repeat doses of antibody to serum amyloid P component clear amyloid deposits in patients with systemic amyloidosis. Science Translational Medicine, 2018, 10 , .	5.8	94
93	Proposed Stages of Myocardial Phenotype Development in FabryÂDisease. JACC: Cardiovascular Imaging, 2019, 12, 1673-1683.	2.3	91
94	Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science, 2022, 375, 183-192.	6.0	91
95	CMR-Verified Regression of Cardiac AL Amyloid After Chemotherapy. JACC: Cardiovascular Imaging, 2018, 11, 152-154.	2.3	90
96	Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study. European Heart Journal Cardiovascular Imaging, 2020, 21, 326-336.	0.5	90
97	Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart, 2016, 102, 741-747.	1.2	88
98	Effect of Low-Dose Intracoronary Alteplase During Primary Percutaneous Coronary Intervention on Microvascular Obstruction in Patients With Acute Myocardial Infarction. JAMA - Journal of the American Medical Association, 2019, 321, 56.	3.8	88
99	Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart, 2005, 91, 1036-1040.	1.2	87
100	Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart, 2012, 98, 773-779.	1.2	86
101	Sex Dimorphism in the MyocardialÂResponse to Aortic Stenosis. JACC: Cardiovascular Imaging, 2018, 11, 962-973.	2.3	85
102	Myocardial Extracellular Volume Quantification by Cardiovascular Magnetic Resonance and Computed Tomography. Current Cardiology Reports, 2018, 20, 15.	1.3	83
103	Prediction of Sarcomere Mutations in Subclinical Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2014, 7, 863-871.	1.3	80
104	Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice. Europace, 2018, 20, f153-f161.	0.7	80
105	Extracellular volume quantification in isolated hypertension - changes at the detectable limits?. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 74.	1.6	79
106	Cardiac Fabry Disease With Late Gadolinium Enhancement Is a Chronic Inflammatory Cardiomyopathy. Journal of the American College of Cardiology, 2016, 68, 1707-1708.	1.2	78
107	Myocardial native T1 and extracellular volume with healthy ageing and gender. European Heart Journal Cardiovascular Imaging, 2018, 19, 615-621.	0.5	78
108	Equilibrium Contrast-enhanced CT Imaging to Evaluate Hepatic Fibrosis: Initial Validation by Comparison with Histopathologic Sampling. Radiology, 2015, 275, 136-143.	3.6	77

#	Article	IF	CITATIONS
109	Splenic Switch-off: A Tool to Assess Stress Adequacy in Adenosine Perfusion Cardiac MR Imaging. Radiology, 2015, 276, 732-740.	3.6	7 5
110	A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, 2019, 12, e009214.	1.3	75
111	Abnormal Cardiac Formation in Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Genetics, 2014, 7, 241-248.	5.1	74
112	Myocardial Amyloidosis. JACC: Cardiovascular Imaging, 2019, 12, 2345-2356.	2.3	74
113	Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images. Frontiers in Cardiovascular Medicine, 2020, 7, 105.	1.1	74
114	Apical Hypertrophic Cardiomyopathy: The Variant Less Known. Journal of the American Heart Association, 2020, 9, e015294.	1.6	72
115	Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. American Heart Journal, 2005, 149, 355-362.	1.2	71
116	T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 73.	1.6	70
117	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2â€"Diagnostic Criteria and Appropriate Utilization. Journal of Cardiac Failure, 2019, 25, 854-865.	0.7	70
118	Myocardial T1 Mapping. Circulation Journal, 2015, 79, 487-494.	0.7	69
119	The "OBS" chart: an evidence based approach to re-design of the patient observation chart in a district general hospital setting. Postgraduate Medical Journal, 2005, 81, 663-666.	0.9	68
120	Extracellular Volume Associates WithÂOutcomes More Strongly Than Native or Post-Contrast Myocardial T1. JACC: Cardiovascular Imaging, 2020, 13, 44-54.	2.3	68
121	Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. International Journal of Nanomedicine, 2017, Volume 12, 1251-1264.	3.3	67
122	Clinical Importance of Left Atrial Infiltration in Cardiac TransthyretinÂAmyloidosis. JACC: Cardiovascular Imaging, 2022, 15, 17-29.	2.3	67
123	Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart, 2011, 97, 1560-1565.	1.2	66
124	Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magnetic Resonance Imaging, 2016, 34, 699-706.	1.0	66
125	Clefts Can Be Seen in the Basal Inferior Wall of the Left Ventricle and the Interventricular Septum in Healthy Volunteers as Well as Patients by Cardiovascular Magnetic Resonance. Journal of the American College of Cardiology, 2007, 50, 1294-1295.	1.2	65
126	Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. European Heart Journal Cardiovascular Imaging, 2013, 14, 963-968.	0.5	65

#	Article	IF	Citations
127	High Prevalence of Intracardiac Thrombi in Cardiac Amyloidosis. Journal of the American College of Cardiology, 2019, 73, 1733-1734.	1.2	65
128	Identifying Cardiac Amyloid in Aortic Stenosis. JACC: Cardiovascular Imaging, 2020, 13, 2177-2189.	2.3	65
129	Dark blood late enhancement imaging. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 77.	1.6	64
130	The fractal heart â€" embracing mathematics in the cardiology clinic. Nature Reviews Cardiology, 2017, 14, 56-64.	6.1	63
131	Measurement of Myocardial Extracellular Volume Fraction by Using Equilibrium Contrast-enhanced CT: Validation against Histologic Findings. Radiology, 2013, 269, 396-403.	3.6	63
132	Cardiac MRI evaluation of myocardial disease. Heart, 2016, 102, 1429-1435.	1.2	62
133	DPD Quantification in CardiacÂAmyloidosis. JACC: Cardiovascular Imaging, 2020, 13, 1353-1363.	2.3	61
134	Time series analysis and mechanistic modelling of heterogeneity and sero-reversion in antibody responses to mild SARSâ€'CoV-2 infection. EBioMedicine, 2021, 65, 103259.	2.7	61
135	Cardiac Phenotype of Prehypertrophic Fabry Disease. Circulation: Cardiovascular Imaging, 2018, 11, e007168.	1.3	58
136	Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. The Lancet Digital Health, 2021, 3, e20-e28.	5.9	57
137	Evaluating access to health and care services during lockdown by the COVID-19 survey in five UK national longitudinal studies. BMJ Open, 2021, 11, e045813.	0.8	57
138	Diagnosis of apical hypertrophic cardiomyopathy: T-wave inversion and relative but not absolute apical left ventricular hypertrophy. International Journal of Cardiology, 2015, 183, 143-148.	0.8	55
139	Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 26.	1.6	55
140	Quantifying the Area at Risk in Reperfused ST-Segment–Elevation Myocardial Infarction Patients Using Hybrid Cardiac Positron Emission Tomography–Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2016, 9, e003900.	1.3	54
141	Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 48.	1.6	54
142	Novel imaging techniques for diffuse myocardial fibrosis. Future Cardiology, 2011, 7, 643-650.	0.5	52
143	Left Atrial Structure in Relationship to Age, Sex, Ethnicity, and Cardiovascular Risk Factors. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	52
144	Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study. Lancet Microbe, The, 2021, 2, e508-e517.	3.4	52

#	Article	IF	CITATIONS
145	Role of T1 mapping as a complementary tool to T2 * for non-invasive cardiac iron overload assessment. PLoS ONE, 2018, 13, e0192890.	1.1	51
146	Switching statins. BMJ: British Medical Journal, 2006, 332, 1344-1345.	2.4	50
147	Fractal Analysis of Myocardial Trabeculations in 2547 Study Participants: Multi-Ethnic Study of Atherosclerosis. Radiology, 2015, 277, 707-715.	3.6	50
148	Morphogenesis of myocardial trabeculae in the mouse embryo. Journal of Anatomy, 2016, 229, 314-325.	0.9	50
149	Dynamic Computed Tomography Myocardial Perfusion Imaging. Circulation: Cardiovascular Imaging, 2017, 10, .	1.3	50
150	Native T1 mapping: inter-study, inter-observer and inter-center reproducibility in hemodialysis patients. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 21.	1.6	50
151	Measurement of Tissue Interstitial Volume in Healthy Patients and Those with Amyloidosis with Equilibrium Contrast-enhanced MR Imaging. Radiology, 2013, 268, 858-864.	3.6	49
152	Myocardial Tissue Characterization: Histological and Pathophysiological Correlation. Current Cardiovascular Imaging Reports, 2014, 7, 9254.	0.4	49
153	Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the british society of cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 57.	1.6	48
154	Arrhythmogenic right ventricular cardiomyopathy mimics: role of cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 16.	1.6	48
155	Different initiatives across Europe to enhance losartan utilization post generics: impact and implications. Frontiers in Pharmacology, 2014, 5, 219.	1.6	48
156	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2â€"Evidence Base and Standardized Methods of Imaging. Circulation: Cardiovascular Imaging, 2021, 14, e000029.	1.3	48
157	Myocardial Storage, Inflammation, and Cardiac Phenotype in Fabry Disease After One Year of Enzyme Replacement Therapy. Circulation: Cardiovascular Imaging, 2019, 12, e009430.	1.3	47
158	Automated Extracellular Volume Fraction Mapping Provides Insights Into the Pathophysiology of Left Ventricular Remodeling Post–Reperfused STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2016, 5, .	1.6	46
159	Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart, 2016, 102, 298-302.	1.2	46
160	Global longitudinal strain, myocardial storage and hypertrophy in Fabry disease. Heart, 2019, 105, 470-476.	1.2	45
161	Immunogenicity of Membrane-bound HIV-1 gp41 Membrane-proximal External Region (MPER) Segments Is Dominated by Residue Accessibility and Modulated by Stereochemistry. Journal of Biological Chemistry, 2013, 288, 31888-31901.	1.6	43
162	Myocardial Fibrosis in Glycogen Storage Disease Type III. Circulation, 2003, 107, e47.	1.6	42

#	Article	IF	Citations
163	Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	42
164	Review of T1 Mapping Methods: Comparative Effectiveness Including Reproducibility Issues. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.4	41
165	Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 57.	1.6	41
166	Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis. Journal of the American College of Cardiology, 2021, 78, 545-558.	1.2	41
167	The Prognostic Implications of Cardiovascular Magnetic Resonance. Circulation: Cardiovascular Imaging, 2009, 2, 243-250.	1.3	40
168	Measurement of Myocardium at Risk with Cardiovascular MR: Comparison of Techniques for Edema Imaging. Radiology, 2015, 275, 61-70.	3.6	40
169	Training for a First-Time Marathon Reverses Age-Related Aortic Stiffening. Journal of the American College of Cardiology, 2020, 75, 60-71.	1.2	40
170	Cardiomyopathies: focus on cardiovascular magnetic resonance. British Journal of Radiology, 2011, 84, S296-S305.	1.0	39
171	Myocardial Damage Detected by Late Gadolinium Enhancement Cardiovascular Magnetic Resonance Is Associated With Subsequent Hospitalization for Heart Failure. Journal of the American Heart Association, 2013, 2, e000416.	1.6	39
172	Texture analysis of cardiovascular magnetic resonance cine images differentiates aetiologies of left ventricular hypertrophy. Clinical Radiology, 2019, 74, 140-149.	0.5	39
173	Late gadolinium enhancement in Brugada syndrome: A marker for subtle underlying cardiomyopathy?. Heart Rhythm, 2017, 14, 583-589.	0.3	38
174	Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, 11, e001974.	1.6	38
175	Trimodality Therapy for Superior Sulcus Non-Small Cell Lung Cancer: Southwest Oncology Group-Intergroup Trial S0220. Annals of Thoracic Surgery, 2014, 98, 402-410.	0.7	37
176	T1 Mapping for Characterization of Intracellular and Extracellular Myocardial Diseases in Heart Failure. Current Cardiovascular Imaging Reports, 2014, 7, 9287.	0.4	37
177	Left Ventricular Hypertrophy Revisited. Circulation, 2017, 136, 2519-2521.	1.6	37
178	Predicting Survival in Repaired Tetralogy of Fallot. JACC: Cardiovascular Imaging, 2022, 15, 257-268.	2.3	37
179	Aortic Stenosis, a Left Ventricular Disease: Insights from Advanced Imaging. Current Cardiology Reports, 2016, 18, 80.	1.3	36
180	Prospective comparison of novel dark blood late gadolinium enhancement with conventional bright blood imaging for the detection of scar. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 91.	1.6	36

#	Article	IF	CITATIONS
181	Cardiac Rhythm Device Identification Using Neural Networks. JACC: Clinical Electrophysiology, 2019, 5, 576-586.	1.3	36
182	Rapid synchronous type 1 IFN and virus-specific TÂcell responses characterize first wave non-severe SARS-CoV-2 infections. Cell Reports Medicine, 2022, 3, 100557.	3.3	36
183	Quantitative myocardial perfusion in coronary artery disease: A perfusion mapping study. Journal of Magnetic Resonance Imaging, 2019, 50, 756-762.	1.9	35
184	Quantitative cardiac MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 693-711.	1.9	35
185	Myocardial Fibrosis in Heart Failure: Anti-Fibrotic Therapies and the Role of Cardiovascular Magnetic Resonance in Drug Trials. Cardiology and Therapy, 2020, 9, 363-376.	1.1	35
186	The myocardial phenotype of Fabry disease pre-hypertrophy and pre-detectable storage. European Heart Journal Cardiovascular Imaging, 2021, 22, 790-799.	0.5	35
187	Myocardial Edema, Myocyte Injury, and Disease Severity in Fabry Disease. Circulation: Cardiovascular Imaging, 2020, 13, e010171.	1.3	35
188	Automatic quantification of the myocardial extracellular volume by cardiac computed tomography: Synthetic ECV by CCT. Journal of Cardiovascular Computed Tomography, 2017, 11, 221-226.	0.7	34
189	Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, $11,\dots$	1.6	34
190	Myoarchitectural disarray of hypertrophic cardiomyopathy begins preâ€birth. Journal of Anatomy, 2019, 235, 962-976.	0.9	34
191	Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging. Journal of Nuclear Cardiology, 2021, 28, 1769-1774.	1.4	34
192	Wasting of the left ventricle in patients with cardiac cachexia: a cardiovascular magnetic resonance study. International Journal of Cardiology, 2004, 97, 15-20.	0.8	33
193	T1 Mapping for Diffuse Myocardial Fibrosis. Journal of the American College of Cardiology, 2013, 62, 1288-1289.	1.2	33
194	Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 80.	1.6	33
195	Advanced Imaging Modalities to Monitor for Cardiotoxicity. Current Treatment Options in Oncology, 2019, 20, 73.	1.3	33
196	Comparison of Hybrid Echo-planar Imaging and FLASH Myocardial Perfusion Cardiovascular MR Imaging. Radiology, 2005, 235, 237-243.	3.6	32
197	Quantitative Myocardial Perfusion in Fabry Disease. Circulation: Cardiovascular Imaging, 2019, 12, e008872.	1.3	32
198	Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Molecular and Cellular Proteomics, 2020, 19, 114-127.	2.5	32

#	Article	IF	CITATIONS
199	Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning. Radiology: Artificial Intelligence, 2020, 2, e200009.	3.0	32
200	DANAMI-2: Is primary angioplasty superior to thrombolysis in acute MI when the patient has to be transferred to an invasive centre?. International Journal of Cardiology, 2002, 85, 199-201.	0.8	31
201	Arrhythmogenic Left Ventricular Cardiomyopathy. Circulation, 2009, 120, 2613-2614.	1.6	31
202	Insight into hypertrophied hearts: a cardiovascular magnetic resonance study of papillary muscle mass and T1 mapping. European Heart Journal Cardiovascular Imaging, 2017, 18, 1034-1040.	0.5	31
203	Cardiac magnetic resonance in heart failure with preserved ejection fraction: myocyte, interstitium, microvascular, and metabolic abnormalities. European Journal of Heart Failure, 2020, 22, 1065-1075.	2.9	31
204	Improved Accuracy of Low-Power Contrast Echocardiography for the Assessment of Left Ventricular Remodeling Compared With Unenhanced Harmonic Echocardiography After Acute Myocardial Infarction: Comparison With Cardiovascular Magnetic Resonance Imaging. Journal of the American Society of Echocardiography, 2005, 18, 1203-1207.	1.2	30
205	Synthetic Myocardial Extracellular VolumeÂFraction. JACC: Cardiovascular Imaging, 2017, 10, 1402-1404.	2.3	30
206	Improved Exercise-Related Skeletal Muscle Oxygen Consumption Following Uptake of Endurance Training Measured Using Near-Infrared Spectroscopy. Frontiers in Physiology, 2017, 8, 1018.	1.3	30
207	The risk of cardiac failure following metal-on-metal hip arthroplasty. Bone and Joint Journal, 2018, 100-B, 20-27.	1.9	30
208	Multimodality Imaging Markers of Adverse Myocardial Remodeling in Aortic Stenosis. JACC: Cardiovascular Imaging, 2019, 12, 1532-1548.	2.3	30
209	Sex differences in left ventricular remodelling, myocardial fibrosis and mortality after aortic valve replacement. Heart, 2019, 105, 1818-1824.	1.2	30
210	Prevalence of abnormal findings in 230 knees of asymptomatic adults using 3.0ÂT MRI. Skeletal Radiology, 2020, 49, 1099-1107.	1.2	30
211	Assessment of Multivessel Coronary Artery Disease Using Cardiovascular Magnetic Resonance Pixelwise Quantitative Perfusion Mapping. JACC: Cardiovascular Imaging, 2020, 13, 2546-2557.	2.3	30
212	Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 16.	1.6	30
213	Free-breathing T2* mapping using respiratory motion corrected averaging. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 3.	1.6	29
214	The embryological basis of subclinical hypertrophic cardiomyopathy. Scientific Reports, 2016, 6, 27714.	1.6	29
215	Clinical impact of cardiovascular magnetic resonance with optimized myocardial scar detection in patients with cardiac implantable devices. International Journal of Cardiology, 2019, 279, 72-78.	0.8	29
216	Formation and Malformation of Cardiac Trabeculae: Biological Basis, Clinical Significance, and Special Yield of Magnetic Resonance Imaging in Assessment. Canadian Journal of Cardiology, 2015, 31, 1325-1337.	0.8	28

#	Article	IF	Citations
217	Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience. Journal of Cardiovascular Medicine, 2007, 8, 1076-1079.	0.6	27
218	Left ventricular non-noncompaction: The mitral valve prolapse of the 21st century?. International Journal of Cardiology, 2013, 164, 3-6.	0.8	27
219	Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance. Scientific Reports, 2019, 9, 1388.	1.6	27
220	Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart, 2020, 106, 824-829.	1.2	26
221	Progression of echocardiographic parameters and prognosis in transthyretin cardiac amyloidosis. European Journal of Heart Failure, 2022, 24, 1700-1712.	2.9	26
222	Hypertrabeculated Left Ventricular Myocardium in Relationship to Myocardial Function and Fibrosis: The Multi-Ethnic Study of Atherosclerosis. Radiology, 2017, 284, 667-675.	3.6	25
223	Getting better value from the NHS drug budget. BMJ: British Medical Journal, 2010, 341, c6449-c6449.	2.4	25
224	Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 29.	1.6	24
225	Diagnostic performance of <i>T</i> ₁ and <i>T</i> ₂ mapping to detect intramyocardial hemorrhage in reperfused STâ€segment elevation myocardial infarction (STEMI) patients. Journal of Magnetic Resonance Imaging, 2017, 46, 877-886.	1.9	24
226	Making MRI available for patients with cardiac implantable electronic devices: growing need and barriers to change. European Radiology, 2020, 30, 1378-1384.	2.3	24
227	A Computationally Efficient Approach to Segmentation of the Aorta and Coronary Arteries Using Deep Learning. IEEE Access, 2021, 9, 108873-108888.	2.6	24
228	Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network. Radiology: Artificial Intelligence, 2021, 3, e200197.	3.0	24
229	Comparative clinical- and cost-effectiveness of candesartan and losartan in the management of hypertension and heart failure: a systematic review, meta- and cost-utility analysis. International Journal of Clinical Practice, 2011, 65, 253-263.	0.8	23
230	Ultrafast Magnetic Resonance Imaging for Iron Quantification in Thalassemia Participants in the Developing World. Circulation, 2016, 134, 432-434.	1.6	23
231	INCA (Peru) Study: Impact of Nonâ€Invasive Cardiac Magnetic Resonance Assessment in the Developing World. Journal of the American Heart Association, 2018, 7, e008981.	1.6	23
232	T1 mapping performance and measurement repeatability: results from the multi-national T1 mapping standardization phantom program (T1MES). Journal of Cardiovascular Magnetic Resonance, 2020, 22, 31.	1.6	23
233	Provision of magnetic resonance imaging for patients with â€~MR-conditional' cardiac implantable electronic devices: an unmet clinical need. Europace, 2016, 19, euw063.	0.7	22
234	Motion-corrected free-breathing LGE delivers high quality imaging and reduces scan time by half: an independent validation study. International Journal of Cardiovascular Imaging, 2019, 35, 1893-1901.	0.7	22

#	Article	IF	CITATIONS
235	Evidence to support magnetic resonance conditional labelling of all pacemaker and defibrillator leads in patients with cardiac implantable electronic devices. European Heart Journal, 2022, 43, 2469-2478.	1.0	22
236	Cardiovascular Magnetic Resonance of Isolated Left Ventricular Apical Hypoplasia. Circulation, 2008, 117, e504-5.	1.6	21
237	Assessing for Cardiotoxicity from Metal-on-Metal Hip Implants with Advanced Multimodality Imaging Techniques. Journal of Bone and Joint Surgery - Series A, 2017, 99, 1827-1835.	1.4	21
238	Blood correction reduces variability and gender differences in native myocardial T1 values at 1.5ÂT cardiovascular magnetic resonance – a derivation/validation approach. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 41.	1.6	21
239	Evaluation of splenic switch off in a tertiary imaging centre: validation and assessment of utility. European Heart Journal Cardiovascular Imaging, 2017, 18, 1216-1221.	0.5	21
240	Early effects of kidney transplantation on the heart - A cardiac magnetic resonance multi-parametric study. International Journal of Cardiology, 2019, 293, 272-277.	0.8	21
241	Healthcare Workers Bioresource: Study outline and baseline characteristics of a prospective healthcare worker cohort to study immune protection and pathogenesis in COVID-19. Wellcome Open Research, 2020, 5, 179.	0.9	21
242	Cardiovascular magnetic resonance in autoimmune rheumatic diseases: a clinical consensus document by the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 2022, 23, e308-e322.	0.5	21
243	Magnetic Resonance Contrast Enhancement of latrogenic Septal Myocardial Infarction in Hypertrophic Cardiomyopathy. Circulation, 2002, 105, 1018-1018.	1.6	20
244	The emerging role of cardiovascular magnetic resonance in refining the diagnosis of hypertrophic cardiomyopathy. Nature Reviews Cardiology, 2009, 6, 166-167.	6.1	20
245	Cardiovascular magnetic resonance in cardiac sarcoidosis with MR conditional pacemaker in situ. Journal of Cardiovascular Magnetic Resonance, 2011, 13, 26.	1.6	20
246	Myocardial Crypts. Circulation: Cardiovascular Imaging, 2012, 5, 431-432.	1.3	20
247	H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts. Clinical Epigenetics, 2020, 12, 106.	1.8	20
248	Early indicators of disease progression in Fabry disease that may indicate the need for disease-specific treatment initiation: findings from the opinion-based PREDICT-FD modified Delphi consensus initiative. BMJ Open, 2020, 10, e035182.	0.8	20
249	Longitudinal assessment of symptoms and risk of SARS-CoV-2 infection in healthcare workers across 5 hospitals to understand ethnic differences in infection risk EClinicalMedicine, 2021, 34, 100835.	3.2	20
250	Cardiovascular Magnetic Resonance and Sport Cardiology: a Growing Role in Clinical Dilemmas. Journal of Cardiovascular Translational Research, 2020, 13, 296-305.	1.1	20
251	Abnormal Myocardial Capillary Density in Apical Hypertrophic Cardiomyopathy Can Be Assessed by Myocardial Contrast Echocardiography. Circulation Journal, 2010, 74, 2166-2172.	0.7	19
252	Extent of Late Gadolinium Enhancement on Cardiovascular Magnetic Resonance Imaging and Its Relation to Left Ventricular Longitudinal Functional Reserve During Exercise in Patients With Hypertrophic Cardiomyopathy. Circulation Journal, 2013, 77, 1742-1749.	0.7	19

#	Article	lF	CITATIONS
253	The influence of aortoseptal angulation on provocable left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Open Heart, 2014, 1, e000176.	0.9	19
254	Abnormal septal convexity into the left ventricle occurs in subclinical hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 64.	1.6	19
255	Can marathon running improve knee damage of middle-aged adults? A prospective cohort study. BMJ Open Sport and Exercise Medicine, 2019, 5, e000586.	1.4	19
256	Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Magnetic Resonance in Medicine, 2020, 84, 2788-2800.	1.9	19
257	Cardiac Magnetic Resonance–Derived Extracellular Volume Mapping for the Quantification of Hepatic and Splenic Amyloid. Circulation: Cardiovascular Imaging, 2021, 14, CIRCIMAGING121012506.	1.3	19
258	Assessment of Reactive Hyperaemia Using Real Time Zonal Echo-Planar Flow Imaging. Journal of Cardiovascular Magnetic Resonance, 2002, 4, 283-287.	1.6	18
259	Impact of microvascular obstruction on semiautomated techniques for quantifying acute and chronic myocardial infarction by cardiovascular magnetic resonance. Open Heart, 2016, 3, e000535.	0.9	18
260	Epicardial myocardial strain abnormalities may identify the earliest stages of arrhythmogenic cardiomyopathy. International Journal of Cardiovascular Imaging, 2016, 32, 593-601.	0.7	18
261	Selective Induction of Homeostatic Th17 Cells in the Murine Intestine by Cholera Toxin Interacting with the Microbiota. Journal of Immunology, 2017, 199, 312-322.	0.4	18
262	Mineralocorticoid receptor antagonist pre-treatment and early post-treatment to minimize reperfusion injury after ST-elevation myocardial infarction: The MINIMIZE STEMI trial. American Heart Journal, 2019, 211, 60-67.	1.2	18
263	Prognostic Value of Pulmonary Transit Time and Pulmonary Blood Volume Estimation Using Myocardial PerfusionÂCMR. JACC: Cardiovascular Imaging, 2021, 14, 2107-2119.	2.3	18
264	Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2021, 14, 2123-2134.	2.3	18
265	HLAâ€DR polymorphism in SARSâ€CoVâ€⊋ infection and susceptibility to symptomatic COVIDâ€19. Immunology, 2022, 166, 68-77.	2.0	18
266	Cardiovascular magnetic resonance and the evaluation of heart failure. Current Cardiology Reports, 2005, 7, 39-44.	1.3	17
267	Repeatability of Cardiac Magnetic Resonance Radiomics: A Multi-Centre Multi-Vendor Test-Retest Study. Frontiers in Cardiovascular Medicine, 2020, 7, 586236.	1.1	17
268	135â€Novel Hybrid Positron Emission Tomography - Magnetic Resonance (PET-MR) Multi-modality Inflammatory Imaging has Improved Diagnostic Accuracy for Detecting Cardiac Sarcoidosis. Heart, 2014, 100, A80.1-A80.	1.2	16
269	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization. Circulation: Cardiovascular Imaging, 2021, 14, e000030.	1.3	16
270	T1 mapping: non-invasive evaluation of myocardial tissue composition by cardiovascular magnetic resonance. Expert Review of Cardiovascular Therapy, 2014, 12, 1455-1464.	0.6	15

#	Article	IF	CITATIONS
271	A T1 and ECV phantom for global T1 mapping quality assurance: The T1 mapping and ECV standardisation in CMR (T1MES) program. Journal of Cardiovascular Magnetic Resonance, 2016, 18, W14.	1.6	15
272	Community delivery of semiautomated fractal analysis tool in cardiac mr for trabecular phenotyping. Journal of Magnetic Resonance Imaging, 2017, 46, 1082-1088.	1.9	15
273	Invasive or non-invasive imaging for detecting high-risk coronary lesions?. Expert Review of Cardiovascular Therapy, 2017, 15, 165-179.	0.6	15
274	Rejuvenating Aged Hematopoietic Stem Cells Through Improvement of Mitochondrial Function. Annals of Laboratory Medicine, 2018, 38, 395-401.	1.2	15
275	Study of indications for cardiac device implantation and utilisation in Fabry cardiomyopathy. Heart, 2019, 105, 1825-1831.	1.2	15
276	Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress. European Heart Journal Cardiovascular Imaging, 2021, 22, 273-281.	0.5	15
277	Impact of lockdown on key workers: findings from the COVID-19 survey in four UK national longitudinal studies. Journal of Epidemiology and Community Health, 2021, 75, 955-962.	2.0	15
278	Myocardial Perfusion Defects in Hypertrophic Cardiomyopathy Mutation Carriers. Journal of the American Heart Association, 2021, 10, e020227.	1.6	15
279	Comparison Between Myocardial Contrast Echocardiography and Single-Photon Emission Computed Tomography for Predicting Transmurality of Acute Myocardial Infarction. American Journal of Cardiology, 2006, 97, 1718-1721.	0.7	14
280	Stress, emotion and the heart: tako-tsubo cardiomyopathy. Postgraduate Medical Journal, 2006, 82, e29-e29.	0.9	14
281	Constrictive Pericarditis After Catheter Ablation for Atrial Fibrillation. Circulation, 2008, 118, e834-5.	1.6	14
282	Myectomy Plus Alfieri Technique for Outflow Tract Obstruction in Hypertrophic Cardiomyopathy. Circulation, 2010, 122, 938-939.	1.6	14
283	Imaging the Myocardial Microcirculation Post-Myocardial Infarction. Current Heart Failure Reports, 2012, 9, 282-292.	1.3	14
284	Lamin mutation location predicts cardiac phenotype severity: combined analysis of the published literature. Open Heart, 2018, 5, e000915.	0.9	14
285	T2* Mapping Techniques. Magnetic Resonance Imaging Clinics of North America, 2019, 27, 439-451.	0.6	14
286	Demographic, multi-morbidity and genetic impact on myocardial involvement and its recovery from COVID-19: protocol design of COVID-HEART—a UK, multicentre, observational study. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 77.	1.6	14
287	Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images. International Journal of Cardiology, 2021, 339, 185-191.	0.8	14
288	Clinical applications of multiparametric CMR in left ventricular hypertrophy. International Journal of Cardiovascular Imaging, 2018, 34, 577-585.	0.7	13

#	Article	IF	Citations
289	MRI for patients with cardiac implantable electronic devices: simplifying complexity with a â€one-stop' service model. BMJ Quality and Safety, 2019, 28, 853-858.	1.8	13
290	Myocardial fibrosis in asymptomatic and symptomatic chronic severeÂprimary mitral regurgitation and relationship to tissue characterisation and left ventricularÂfunction on cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 86.	1.6	13
291	Effect of remote ischaemic conditioning on infarct size and remodelling in ST-segment elevation myocardial infarction patients: the CONDI-2/ERIC-PPCI CMR substudy. Basic Research in Cardiology, 2021, 116, 59.	2.5	13
292	Combined Long? and Short?Axis Myocardial Perfusion Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 2004, 6, 811-816.	1.6	12
293	CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O82.	1.6	12
294	Late Anthracycline-Related Cardiotoxicity in Low-Risk Breast Cancer Patients. Journal of the American College of Cardiology, 2017, 69, 2573-2575.	1.2	12
295	001â€Multiparametric mapping to understand pathophysiology in cardiac amyloidosis. Heart, 2017, 103, A1-A2.	1.2	12
296	Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Genes and Genomics, 2018, 40, 755-766.	0.5	12
297	Cardiovascular Remodeling Experienced by Real-World, Unsupervised, Young Novice Marathon Runners. Frontiers in Physiology, 2020, 11, 232.	1.3	12
298	Access to MRI for patients with cardiac pacemakers and implantable cardioverter defibrillators. Open Heart, 2021, 8, e001598.	0.9	12
299	A Decade Follow-up of a Thalassemia Major (TM) Cohort Monitored by Cardiac Magnetic Resonance Imaging (CMR): Significant Reduction In Patients with Cardiac Iron and In Total Mortality. Blood, 2010, 116, 1011-1011.	0.6	12
300	Phenotyping hypertrophic cardiomyopathy using cardiac diffusion magnetic resonance imaging: the relationship between microvascular dysfunction and microstructural changes. European Heart Journal Cardiovascular Imaging, 2022, 23, 352-362.	0.5	12
301	Improving cardiovascular magnetic resonance access in low- and middle-income countries for cardiomyopathy assessment: rapid cardiovascular magnetic resonance. European Heart Journal, 2022, 43, 2496-2507.	1.0	12
302	Contrast Echocardiography Versus Gated Single Photon Emission Computed Tomography for the Assessment of Parameters of Left Ventricular Remodeling After Acute Myocardial Infarction. Journal of the American Society of Echocardiography, 2006, 19, 280-284.	1.2	11
303	How to lose a billion pounds. International Journal of Clinical Practice, 2007, 61, 2-3.	0.8	11
304	AL and ATTR cardiac amyloid are different: native T1 mapping and ECV detect different biology. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P341.	1.6	11
305	Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: Is whole heart coverage necessary?. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 7.	1.6	11
306	Exploiting Differences in Myocardial Compartments With Native T1 and Extracellular Volume Fraction for the Diagnosis of Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2015, 8, .	1.3	11

#	Article	IF	CITATIONS
307	Redefining viability by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction. Scientific Reports, 2017, 7, 14676.	1.6	11
308	Variation in cardiovascular magnetic resonance myocardial contouring: Insights from an international survey. Journal of Magnetic Resonance Imaging, 2019, 50, 1336-1338.	1.9	11
309	A deep learning methodology for the automated detection of end-diastolic frames in intravascular ultrasound images. International Journal of Cardiovascular Imaging, 2021, 37, 1825-1837.	0.7	11
310	A comparison of standard and high dose adenosine protocols in routine vasodilator stress cardiovascular magnetic resonance: dosage affects hyperaemic myocardial blood flow in patients with severe left ventricular systolic impairment. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 37.	1.6	11
311	Guidelines for the monitoring and management of iron overload in patients with haemoglobinopathies and rare anaemias. British Journal of Haematology, 2022, 196, 336-350.	1.2	11
312	Automated Inâ€Line Artificial Intelligence Measured Global Longitudinal Shortening and Mitral Annular Plane Systolic Excursion: Reproducibility and Prognostic Significance. Journal of the American Heart Association, 2022, 11, e023849.	1.6	11
313	Evolution and Clinical Importance of Fibrosis in HCM. JACC: Cardiovascular Imaging, 2011, 4, 1221-1223.	2.3	10
314	Mineralocorticoid Receptor Antagonist Pretreatment to <scp>MINIMISE</scp> Reperfusion Injury After <scp>ST</scp> â€Elevation Myocardial Infarction (The <scp>MINIMISE STEMI</scp> Trial): Rationale and Study Design. Clinical Cardiology, 2015, 38, 259-266.	0.7	10
315	Cardiac amyloidosis in aortic stenosis: The tip of the iceberg. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 965-966.	0.4	10
316	Diagnosis and treatment of the cardiovascular consequences of Fabry disease. QJM - Monthly Journal of the Association of Physicians, 2019, 112, 3-9.	0.2	10
317	Two-Minute k-Space and Time–accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification. Radiology: Cardiothoracic Imaging, 2019, 1, e180008.	0.9	10
318	Recreational marathon running does not cause exercise-induced left ventricular hypertrabeculation. International Journal of Cardiology, 2020, 315, 67-71.	0.8	10
319	Age matters: differences in exercise-induced cardiovascular remodelling in young and middle aged healthy sedentary individuals. European Journal of Preventive Cardiology, 2021, 28, 738-746.	0.8	10
320	Is the immediate effect of marathon running on novice runners' knee joints sustained within 6Âmonths after the run? A follow-up 3.0ÂT MRI study. Skeletal Radiology, 2020, 49, 1221-1229.	1.2	10
321	Standardising clinical outcomes measures for adult clinical trials in Fabry disease: A global Delphi consensus. Molecular Genetics and Metabolism, 2021, 132, 234-243.	0.5	10
322	Healthcare Workers Bioresource: Study outline and baseline characteristics of a prospective healthcare worker cohort to study immune protection and pathogenesis in COVID-19. Wellcome Open Research, 2020, 5, 179.	0.9	10
323	Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science, 2021, , eabm $0811.$	6.0	10
324	Quantitative Myocardial Perfusion Predicts Outcomes in Patients With Prior SurgicalÂRevascularization. Journal of the American College of Cardiology, 2022, 79, 1141-1151.	1.2	10

#	Article	IF	CITATIONS
325	Right to left shunt following radiofrequency catheter ablation of atrial fibrillation in a patient with complex congenital heart disease. Europace, 2010, 12, 289-290.	0.7	9
326	Age and gender dependence of pre-contrast T1-relaxation times in normal human myocardium at 1.5T using ShMOLLI. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	1.6	9
327	Simplifying cardiovascular magnetic resonance pulse sequence terminology. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 3960.	1.6	9
328	Measurement of liver and spleen interstitial volume in patients with systemic amyloid light-chain amyloidosis using equilibrium contrast CT. Abdominal Radiology, 2017, 42, 2646-2651.	1.0	9
329	A case report in cardiovascular magnetic resonance: the contrast agent matters in amyloid. BMC Medical Imaging, 2017, 17, 3.	1.4	9
330	The Effect of Blood Composition on T1ÂMapping. JACC: Cardiovascular Imaging, 2019, 12, 1888-1890.	2.3	9
331	Myocardial Inflammation and Edema in People Living With Human Immunodeficiency Virus. JACC: Cardiovascular Imaging, 2020, 13, 1278-1280.	2.3	9
332	Evaluation of the Efficacy of Computed Tomographic Coronary Angiography in Assessing Coronary Artery Morphology and Physiology: Rationale and Study Design. Cardiology, 2020, 145, 285-293.	0.6	9
333	Computed tomography cardiac angiography for planning invasive angiographic procedures in patients with previous coronary artery bypass grafting. EuroIntervention, 2020, 15, e1351-e1357.	1.4	9
334	Myocardial Fibrosis Quantified by Cardiac CT Predicts Outcome in Severe Aortic Stenosis After Transcatheter Intervention. JACC: Cardiovascular Imaging, 2022, 15, 542-544.	2.3	9
335	Myocardial Perfusion Imaging After Severe COVID-19 Infection Demonstrates Regional Ischemia Rather Than Global Blood Flow Reduction. Frontiers in Cardiovascular Medicine, 2021, 8, 764599.	1.1	9
336	Initial experience with the intravascular contrast agent NC100150-injection (Clariscan $\hat{A}^{@}$) for breath-hold and navigator-gated magnetic resonance coronary artery imaging. Journal of Magnetic Resonance Imaging, 2002, 16, 217-223.	1.9	8
337	T1 mapping in severe aortic stenosis: insights into LV remodeling. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O89.	1.6	8
338	Global Myocardial Edema in Antisynthetase Syndrome Detected by Cardiovascular Magnetic Resonance Mapping Techniques. Circulation, 2016, 133, e25-6.	1.6	8
339	Clinical academic research in the time of Corona: A simulation study in England and a call for action. PLoS ONE, 2020, 15, e0237298.	1.1	8
340	Non-invasive characterization of pleural and pericardial effusions using T1 mapping by magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2022, 23, 1117-1126.	0.5	8
341	Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Journal of Cardiac Failure, 2022, 28, e1-e4.	0.7	8
342	Impact of afterload and infiltration on coexisting aortic stenosis and transthyretin amyloidosis. Heart, 2022, 108, 67-72.	1.2	8

#	Article	IF	CITATIONS
343	Cardiac Pseudotumor: Tissue Characterization by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 2003, 5, 497-500.	1.6	8
344	Improved Cine Cardiovascular Magnetic Resonance Using Clariscanâ,, (NC100150 Injection). Journal of Cardiovascular Magnetic Resonance, 2001, 3, 303-310.	1.6	7
345	Endomyocardial fibrosis in churg-strauss syndrome. Clinical Cardiology, 2004, 27, 21-21.	0.7	7
346	The Office of Fair Trading report: a prescription for value-based drug pricing. Journal of the Royal Society of Medicine, 2007, 100, 216-218.	1.1	7
347	Cardiac Fibroelastoma: Cardiovascular Magnetic Resonance Characteristics. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 621-621.	1.6	7
348	Monitoring systemic amyloidosis using MRI measurements of the extracellular volume fraction. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2013, 20, 93-98.	1.4	7
349	Extracellular volume with bolusâ€only technique in amyloidosis patients: Diagnostic accuracy, correlation with other clinical cardiac measures, and ability to track changes in amyloid load over time. Journal of Magnetic Resonance Imaging, 2018, 47, 1677-1684.	1.9	7
350	Sex and regional differences in myocardial plasticity in aortic stenosis are revealed by 3D model machine learning. European Heart Journal Cardiovascular Imaging, 2019, 21, 417-427.	0.5	7
351	Measurement reproducibility of slice-interleaved T1 and T2 mapping sequences over 20 months: A single center study. PLoS ONE, 2019, 14, e0220190.	1.1	7
352	Asymptomatic health-care worker screening during the COVID-19 pandemic – Authors' reply. Lancet, The, 2020, 396, 1394-1395.	6.3	7
353	Rapid Cardiac MRI Protocols: Feasibility and Potential Applications. Current Radiology Reports, 2020, 8, 1.	0.4	7
354	Myocardial Scarring Caused by Left Ventricular Assist Device (LVAD) Insertion Demonstrated by Cardiovascular Magnetic Resonance, 2003, 5, 361-363.	1.6	7
355	CMR in Heart Failure. Cardiology Research and Practice, 2011, 2011, 1-11.	0.5	6
356	A simple technique to measure TAPSE and MAPSE on CMR and normal values. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P22.	1.6	6
357	Full left ventricular coverage is essential for the accurate quantification of the area-at-risk by T1 and T2 mapping. Scientific Reports, 2017, 7, 4871.	1.6	6
358	Development of molecular markers for detecting almond, peanut, pine nut, and walnut in commercial food using quantitative real-time PCR. Applied Biological Chemistry, 2018, 61, 345-354.	0.7	6
359	A randomised controlled trial evaluating arrhythmia burden, risk of sudden cardiac death and stroke in patients with Fabry disease: the role of implantable loop recorders (RalLRoAD) compared with current standard practice. Trials, 2019, 20, 314.	0.7	6
360	Measurement of T1 Mapping in Patients With Cardiac Devices: Off-Resonance Error Extends Beyond Visual Artifact but Can Be Quantified and Corrected. Frontiers in Cardiovascular Medicine, 2021, 8, 631366.	1.1	6

#	Article	IF	CITATIONS
361	Hypertrophic cardiomyopathy: insights from extracellular volume mapping. European Journal of Preventive Cardiology, 2022, 28, e39-e41.	0.8	6
362	Longitudinal birth cohort study finds that life-course frailty associates with later-life heart size and function. Scientific Reports, 2021, 11, 6272.	1.6	6
363	Use of quantitative cardiovascular magnetic resonance myocardial perfusion mapping for characterization of ischemia in patients with left internal mammary coronary artery bypass grafts. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 82.	1.6	6
364	The BYPASS-CTCA Study: the value of Computed Tomography Cardiac Angiography (CTCA) in improving patient-related outcomes in patients with previous bypass operation undergoing invasive coronary angiography: Study Protocol of a Randomised Controlled Trial. Annals of Translational Medicine, 2021, 9, 1395-1395.	0.7	6
365	Futility in Transcatheter Aortic Valve Implantation: A Search for Clarity. Interventional Cardiology Review, 2022, 17, e01.	0.7	6
366	Cardiac Computed Tomography: Application in Valvular Heart Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 849540.	1.1	6
367	Cardiovascular Magnetic Resonance of imminent cardiac tamponade due to postpericardiotomy syndrome. International Journal of Cardiology, 2003, 91, 241-244.	0.8	5
368	EXTRACELLULAR MATRIX EXPANSION IN NON-INFARCTED MYOCARDIUM IS ASSOCIATED WITH SUBSEQUENT DEATH, HOSPITALIZATION FOR HEART FAILURE, OR BOTH ACROSS THE EJECTION FRACTION SPECTRUM. Journal of the American College of Cardiology, 2014, 63, A1007.	1.2	5
369	LGE-PSIR is an independent predictor of mortality in cardiac amyloidosis: a 250 patient prospective study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O27.	1.6	5
370	Why democratise bioinformatics?. BMJ Innovations, 2016, 2, 166-171.	1.0	5
371	Diffuse myocardial fibrosis - a therapeutic target? Proof of regression at 1-year following aortic valve replacement: the RELIEF-AS study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O37.	1.6	5
372	CMR findings in high endurance veteran athletes - a 247 subject study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O38.	1.6	5
373	Longitudinal Assessment of CardiacÂlnvolvement in Fabry Disease UsingÂCardiovascular Magnetic ResonanceÂlmaging. JACC: Cardiovascular Imaging, 2020, 13, 1850-1852.	2.3	5
374	Inorganic nitrate attenuates cardiac dysfunction: roles for xanthine oxidoreductase and nitric oxide. British Journal of Pharmacology, 2022, 179, 4757-4777.	2.7	5
375	How to webcast lectures and conferences. BMJ: British Medical Journal, 2009, 338, b31-b31.	2.4	5
376	Statins audit: wrong question, wrong conclusions. Lancet, The, 2007, 369, 640.	6.3	4
377	Pharmacopolitics, statin switching and therapeutic substitution: much ado about something. International Journal of Clinical Practice, 2008, 62, 354-355.	0.8	4
378	The Full Width Half Maximum technique is superior for LGE quantification regardless of its aetiology. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	4

#	Article	lF	CITATIONS
379	Pre-contrast ShMOLLI T1 mapping in cardiac AL amyloidosis. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	1.6	4
380	Response to Letter Regarding Article, "Comprehensive Validation of Cardiovascular Magnetic Resonance Techniques for the Assessment of Myocardial Extracellular Volume― Circulation: Cardiovascular Imaging, 2013, 6, e26-7.	1.3	4
381	Response to Letters Regarding Article, "Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis― Circulation, 2016, 133, e450-1.	1.6	4
382	Reproducibility of native T1 mapping using ShMOLLI and MOLLI - implications for sample size calculation. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P2.	1.6	4
383	Automated Quantitative Stress Perfusion in a Clinical Routine. Magnetic Resonance Imaging Clinics of North America, 2019, 27, 507-520.	0.6	4
384	Randomised, double-blind, placebo-controlled clinical trial investigating the effects of inorganic nitrate in hypertension-induced target organ damage: protocol of the NITRATE-TOD study in the UK. BMJ Open, 2020, 10, e034399.	0.8	4
385	Dose-Dependent Progressive Immunotherapeutic Clearance of Systemic Amyloid Deposits By Repeated Doses of Antibody to Serum Amyloid P Component (SAP). Blood, 2015, 126, 1836-1836.	0.6	4
386	Automated scar quantification by CMR: a step in the right direction. Journal of Thoracic Disease, 2013, 5, 381-2.	0.6	4
387	Detailed Assessment of Low-Voltage Zones Localization by Cardiac MRIÂinÂPatients With Implantable Devices. JACC: Clinical Electrophysiology, 2022, 8, 225-235.	1.3	4
388	Study protocol: MyoFit46â€"the cardiac sub-study of the MRC National Survey of Health and Development. BMC Cardiovascular Disorders, 2022, 22, 140.	0.7	4
389	Cardiovascular magnetic resonance of iatrogenic ventricular scarring due to catheter ablation for left ventricular tachycardia. International Journal of Cardiology, 2003, 91, 249-250.	0.8	3
390	The quantification and role of diffuse myocardial fibrosis in familial dilated cardiomyopathy - an equilibrium contrast cmr study. Journal of Cardiovascular Magnetic Resonance, $2011,13,\ldots$	1.6	3
391	Myocardial T1 mapping: where are we now and where are we going?. Research Reports in Clinical Cardiology, 0, , 339.	0.2	3
392	Feasibility of the REDCap platform for Single Center and Collaborative Multicenter CMR Research. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P89.	1.6	3
393	Quantifying right ventricular diffuse fibrosis in tetralogy of Fallot - a novel customised approach for the challenges of the right ventricle. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O26.	1.6	3
394	Hematocrit, iron and HDL-cholesterol explain 90% of variation in native blood T1. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O86.	1.6	3
395	Native T1 mapping versus CMR Feature Tracking (FT) derived strain analysis for the assessment of cardiac disease manifestation in Anderson Fabry. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q43.	1.6	3
396	Myocardial Fibrosis in Hypertensive HeartÂFailure. Journal of the American College of Cardiology, 2016, 67, 261-263.	1.2	3

#	Article	IF	CITATIONS
397	028â€Routine identification of hypoperfusion in cardiac amyloidosis by myocardial blood flow mapping. Heart, 2017, 103, A24-A24.	1.2	3
398	Cardiac computed tomography for the detection of cardiac amyloidosis. Journal of Cardiovascular Computed Tomography, 2017, 11, 155-156.	0.7	3
399	Understanding the Myocardial Architecture of Hypertrophic Cardiomyopathy for Clinical Care. Journal of the American College of Cardiology, 2019, 73, 2503-2505.	1.2	3
400	Advanced Imaging Insights in ApicalÂHypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2020, 13, 624-630.	2.3	3
401	Noninvasive rapid cardiac magnetic resonance for the assessment of cardiomyopathies in low-middle income countries. Expert Review of Cardiovascular Therapy, 2021, 19, 387-398.	0.6	3
402	Endâ€diastolic segmentation of intravascular ultrasound images enables more reproducible volumetric analysis of atheroma burden. Catheterization and Cardiovascular Interventions, 2022, 99, 706-713.	0.7	3
403	Cardiac device implantation and device usage in Fabry and hypertrophic cardiomyopathy. Orphanet Journal of Rare Diseases, 2022, 17, 6.	1.2	3
404	Non-invasive Ischaemia Testing in Patients With Prior Coronary Artery Bypass Graft Surgery: Technical Challenges, Limitations, and Future Directions. Frontiers in Cardiovascular Medicine, 2021, 8, 795195.	1.1	3
405	Preprocedural Prognostic Factors in Acute Decompensated Aortic Stenosis. American Journal of Cardiology, 2022, 174, 96-100.	0.7	3
406	Cardiovascular magnetic resonance of asymptomatic myocardial infarction. International Journal of Cardiology, 2004, 93, 79-80.	0.8	2
407	Late recurrence of outflow tract obstruction seven years after septal ablation in hypertrophic cardiomyopathy. International Journal of Cardiology, 2005, 100, 341-342.	0.8	2
408	Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy using cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	2
409	Beyond late gadolinium enhancement: the key role of diffuse myocardial fibrosis in severe aortic stenosis - an Equilibrium Contrast CMR study. Journal of Cardiovascular Magnetic Resonance, 2011, 13,	1.6	2
410	Equilibrium contrast CMR for the detection of amyloidosis in mice. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	2
411	Pre-contrast T1 mapping for detection of myocardial fibrosis in asymptomatic and symptomatic aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2012, 14 , .	1.6	2
412	Cardiac amyloid burden assessment by T1 mapping predicts survival in patients with systemic AL amyloidosis - a 2 year follow-up study. Journal of Cardiovascular Magnetic Resonance, 2014, 16, O5.	1.6	2
413	Native T1 mapping in ATTR cardiac amyloidosis - comparison with AL cardiac amyloidosis - a 200 patient study. Journal of Cardiovascular Magnetic Resonance, 2014, 16, O4.	1.6	2
414	126â€Advanced Assessment of Cardiac Morphology and Prediction of Gene Carriage by CMR in Hypertrophic Cardiomyopathy - The HCMNET/UCL Collaboration. Heart, 2014, 100, A72-A73.	1.2	2

#	Article	IF	CITATIONS
415	29â€Synthetic ECV – simplifying ECV quantification by deriving haematocrit from T1 blood. Heart, 2015, 101, A16.2-A17.	1.2	2
416	Myocardial fibrosis is associated with subsequent death and hospitalization for heart failure in obese adults. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	1.6	2
417	Myocardial iron quantification using $T2^*$ and native $T1$ mapping - a 250 patient study. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P312.	1.6	2
418	An instantaneous ECV with no blood sampling: using native blood T1 for hematocrit is as good as standard ECV. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	1.6	2
419	Pilot data of right ventricular myocardial T1 quantification by free-breathing fat-water separated dark blood saturation-recovery imaging. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	1.6	2
420	Initial validation of equilibrium contrast imaging for extracellular volume quantification using a threeâ€dimensional engineered tissue model. Journal of Magnetic Resonance Imaging, 2016, 43, 1224-1229.	1.9	2
421	Transthyretin Cardiac Amyloidosis: From Rare Monogenic Disease to Common Pathway in Heart Failure?. Revista Espanola De Cardiologia (English Ed), 2016, 69, 888-889.	0.4	2
422	Ultrafast CMR to deliver high volume screening of an at risk thalassemia population in the developing world: preliminary results from the TIC-TOC study (Thailand and UK international collaboration in) Tj ETQq0 0 0 r	gBŢ_{Over	lock 10 Tf 50
423	Resonance, 2016, 18, O39. Epitope mapping and kinetics of CD4 T cell immunity to pneumonia virus of mice in the C57BL/6 strain. Scientific Reports, 2017, 7, 3472.	1.6	2
424	Comparative analysis of chloroplast DNA sequences of Codonopsis lanceolata and Platycodon grandiflorus and application in development of molecular markers. Applied Biological Chemistry, 2017, 60, 23-31.	0.7	2
425	014â€Wideband free breathing MOCO LGE changes patient care in patients with implantable cardiac defibrillators. Heart, 2017, 103, A11-A12.	1,2	2
426	004 Perfusion mapping in hypertrophic cardiomyopathy: microvascular dysfunction occurs regardless of hypertrophy. Heart, 2017, 103, A4.1-A4.	1.2	2
427	Myocardial Hypertrophy, Matrix Expansion, and Focal Scar. Circulation: Cardiovascular Imaging, 2018, 11, e007975.	1.3	2
428	Metal-on-metal hips and heart failure – Can we relax?. International Journal of Cardiology, 2019, 284, 65-66.	0.8	2
429	Extreme cardiac iron loading in transfusion-dependent thalassaemia major: cardiac T2* and T1 mapping guiding treatment. European Heart Journal, 2019, 40, 3578-3578.	1.0	2
430	Mapping Phenotype Development in Fabry Disease. Circulation: Cardiovascular Imaging, 2019, 12, e009067.	1.3	2
431	Improvements in Skeletal Muscle Can Be Detected Using Broadband NIRS in First-Time Marathon Runners. Advances in Experimental Medicine and Biology, 2020, 1232, 245-251.	0.8	2
432	The evolution of cardiovascular COVID-19 research. European Heart Journal, 2021, 42, 2953-2954.	1.0	2

#	Article	IF	Citations
433	Association of Myocardial Fibrosis and Stroke Volume by Cardiovascular Magnetic Resonance in Patients With Severe Aortic Stenosis With Outcome After Valve Replacement. JAMA Cardiology, 2022, 7, 513.	3.0	2
434	Multimodality Imaging for Cardiotoxicity: State of the Art and Future Perspectives. Journal of Cardiovascular Pharmacology, 2022, 80, 547-561.	0.8	2
435	Superior Vena Cava Occlusion by Cardiovascular Magnetic Resonance. Circulation, 2010, 122, 853-853.	1.6	1
436	Cardiovascular magnetic resonance in the evaluation of heart failure. Journal of Cardiovascular Medicine, 2011, Publish Ahead of Print, 24-31.	0.6	1
437	Cardiac involvement in cardiac AL amyloidosis as measured by equilibrium contrast cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	1.6	1
438	Reply. JACC: Cardiovascular Imaging, 2014, 7, 849-850.	2.3	1
439	Heart muscle disease and cardiovascular magnetic resonance imaging. British Journal of Hospital Medicine (London, England: 2005), 2014, 75, 384-390.	0.2	1
440	Bâ€Embryogenesis of Ventricular Myocardial Trabeculae – Novel Insights from Episcopic 3D Imaging and Fractal Analysis of Wild-type and Notch MIB1 Noncompaction Mouse Models. Heart, 2014, 100, A125-A128.	1.2	1
441	Hybrid PET/MR metabolic imaging of the reperfused infarct - new biology, future directions. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O41.	1.6	1
442	Amiloidosis cardiaca por transtiretina: antes una enfermedad monogénica minoritaria, ¿ahora una vÃa común en la insuficiencia cardiaca?. Revista Espanola De Cardiologia, 2016, 69, 888-889.	0.6	1
443	Evolution of hypertrophic cardiomyopathy in sarcomere mutation carriers: TableÂ1. Heart, 2016, 102, 1779-1781.	1.2	1
444	Occult senile cardiac amyloid in severe calcific aortic stenosis is not rare and has a poor prognosis: a 146 patient CMR biopsy study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O40.	1.6	1
445	006â€Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. Heart, 2017, 103, A6.1-A6.	1.2	1
446	Response by Merghani et al to Letters Regarding Article, "Prevalence of Subclinical Coronary Artery Disease in Masters Endurance Athletes With a Low Atherosclerotic Risk Profile― Circulation, 2018, 137, 541-542.	1.6	1
447	The subclinical phenotype of cardiac Fabry disease. Molecular Genetics and Metabolism, 2018, 123, S107.	0.5	1
448	1161Accuracy of non contrast magnetic resonance for clinical diagnosis of cardiac amyloidosis - a 868 patient prospective study. European Heart Journal, 2018, 39, .	1.0	1
449	$1\hat{a}$ €A multi-centre study of cardiac amyloidosis in tavi patients. , 2018, , .		1
450	Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction patients. Scientific Reports, 2019, 9, 9056.	1.6	1

#	Article	IF	CITATIONS
451	The Authors Reply:. JACC: Cardiovascular Imaging, 2020, 13, 1294-1295.	2.3	1
452	An unusual cause of polymorphic ventricular tachycardia: Acquired long QT syndrome from atypical variant of stress-induced cardiomyopathy. SAGE Open Medical Case Reports, 2020, 8, 2050313X2094430.	0.2	1
453	127 Myocardial fibrosis and surgical scarring in operated adult congenital heart disease. European Heart Journal, 2003, 24, 8.	1.0	1
454	670 The pathological basis of Q-waves in myocardial infarction?infarct extent rather than transmurality. European Heart Journal, 2003, 24, 120.	1.0	1
455	Value of Cardiac Magnetic Resonance Imaging in Fabry Disease. International Cardiovascular Forum Journal, 0, 9, .	1.1	1
456	Effective Study: Development and Application of a Questionâ€Driven, Timeâ€Effective Cardiac Magnetic Resonance Scanning Protocol. Journal of the American Heart Association, 2022, 11, e022605.	1.6	1
457	Declining Levels and Bioavailability of IGF-I in Cardiovascular Aging Associate With QT Prolongation–Results From the 1946 British Birth Cohort. Frontiers in Cardiovascular Medicine, 2022, 9, 863988.	1.1	1
458	Microvascular obstruction and missed infarction. British Heart Journal, 2002, 88, 330-330.	2.2	0
459	Cardiac amyloid by cardiovascular magnetic resonance. Heart, 2006, 93, 1496-1496.	1.2	0
460	Progressive myocardial scarring from sarcoidosis. Journal of Cardiovascular Medicine, 2007, 8, 468-469.	0.6	0
461	038â€Detrimental effects of erythropoietin as an adjunct to PPCI: a randomised controlled trial in acute MI using cardiac MRI. Heart, 2010, 96, A22.3-A23.	1.2	0
462	Equilibrium contrast CMR for the measurement of diffuse myocardial fibrosis. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	0
463	Cost-saving opportunities and angiotensin-II receptor blocker prescribing. International Journal of Clinical Practice, 2011, 65, 912-912.	0.8	0
464	The distribution of hypertrophy in anderson fabry disease. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	0
465	The evolution and clinical importance of scar in hypertrophic cardiomyopathy - a 7 year CMR follow-up study. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	0
466	Pericardial liposarcoma. Heart Asia, 2012, 4, 31-31.	1.1	0
467	An unusual left ventriculography of a patient presenting with †panic attacks'. European Heart Journal, 2012, 33, 3087-3087.	1.0	0
468	The importance of prompt CPR in cardiac arrest. BMJ, The, 2012, 344, e4204-e4204.	3.0	0

#	Article	IF	CITATIONS
469	093â€Cardiac involvement in cardiac al amyloidosis as measured by equilibrium contrast cardiovascular magnetic resonance. Heart, 2012, 98, A54.1-A54.	1.2	0
470	092 Interstitial expansion in health and disease—an equilibrium contrast CMR study. Heart, 2012, 98, A53-A54.	1.2	0
471	Cardiac arrest and myocardial pseudoinfarction. Lancet, The, 2012, 379, 1074.	6.3	O
472	Cardiovascular magnetic resonance in rare systemic diseases. Neurology International, 2013, 3, 8.	0.2	0
473	083 HISTOLOGICAL VALIDATION OF DYNAMIC-EQUILIBRIUM CARDIOVASCULAR MAGNETIC RESONANCE FOR THE ASSESSMENT OF MYOCARDIAL EXTRACELLULAR VOLUME. Heart, 2013, 99, A51-A52.	1.2	0
474	Expert Opinion. Journal of Thoracic Imaging, 2014, 29, 133.	0.8	0
475	Reply: Myocardial Extracellular Volume Measurement by Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2014, 7, 107-108.	2.3	O
476	Spotting senile systemic amyloidosis: why we miss it. Orphanet Journal of Rare Diseases, 2015, 10, .	1.2	0
477	Cardiovascular magnetic resonance of a hiatus hernia causing positional cardiac compression. European Heart Journal Cardiovascular Imaging, 2015, 16, 818-818.	0.5	O
478	Clinical application of MOLLI T1* for extracellular volume calculation in healthy volunteers and aortic stenosis. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	1.6	0
479	Splenic switch-off, a potential novel marker of lack of adenosine response: prevalence and measurement reproducibility. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P122.	1.6	O
480	Incidence of left ventricular thrombi in reperfused STEMI patients detected by contrast-enhanced CMR. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	1.6	0
481	CMR detects abnormal septal convexity into the left ventricle in preclinical hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P274.	1.6	0
482	Precision and reproducibility of blood T1 estimation: implications of T1 star on ECV calculation. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P4.	1.6	0
483	Performance of automated ECV maps versus conventionally calculated ECV. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P56.	1.6	0
484	Quantification of the area-at-risk by T1 and T2 mapping CMR at 3T. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P8.	1.6	0
485	Splenic switch-off, a potential novel marker of lack of adenosine response: relationship to heart rate response and demographic factors. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P92.	1.6	O
486	Native myocardial T1 precision is increased by correcting for myocardial blood variation. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q47.	1.6	0

#	Article	IF	Citations
487	Cardiovascular magnetic resonance frontiers: Tissue characterisation with mapping. South African Journal of Radiology, 2016, 20, .	0.1	0
488	Cardiovascular magnetic resonance in hypertrophic cardiomyopathy and infiltrative cardiomyopathy. South African Journal of Radiology, 2016, 20, .	0.1	0
489	The association of left atrial volume with age, ethnicity and cardiovascular risk factors in men and women: the Multi-Ethnic Study of Atherosclerosis (MESA). Journal of Cardiovascular Magnetic Resonance, 2016, 18, 065.	1.6	0
490	Can left ventricular endocardial surface roughness be measured by fractal dimension on fast gradient echo sequences?. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P41.	1.6	0
491	Current provision for MRI scanning of patients with cardiac implantable electronic devices - a national survey of hospitals in England. Journal of Cardiovascular Magnetic Resonance, 2016, 18, O125.	1.6	0
492	Relationship of regional myocardial deformation and myocardial fibrosis to myocardial trabeculation: The Multi-Ethnic Study of Atherosclerosis. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 077.	1.6	0
493	High-sensitivity Troponin-T levels in reperfused STEMI patients: A comparison with CMR. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P72.	1.6	0
494	It's not just the mitral valve - abnormal motion of the whole aorto-mitral apparatus occurs in both overt and subclinical hypertrophic cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q37.	1.6	0
495	ECG, LVH and T1 changes in Fabry disease - implications for screening and understanding of the disease model. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q48.	1.6	0
496	Left ventricular remodeling after reperfused acute myocardial infarction: insights from automated ECV mapping. Journal of Cardiovascular Magnetic Resonance, 2016, 18, Q67.	1.6	0
497	Letter by Treibel et al Regarding Article, "Sex-Related Discordance Between Aortic Valve Calcification and Hemodynamic Severity of Aortic Stenosis: Is Valvular Fibrosis the Explanation?― Circulation Research, 2017, 120, e24-e25.	2.0	0
498	015â€Clinical utility of T1 mapping in cardiac ATTR amyloidosis – diagnostic performance and prognostic capability. Heart, 2017, 103, A12-A13.	1.2	0
499	Response by Andrews et al to Letter Regarding Article, "Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging― Circulation: Arrhythmia and Electrophysiology, 2017, 10.	2.1	0
500	Highlights From the <i>Circulation</i> Family of Journals. Circulation, 2017, 136, 871-876.	1.6	0
501	013â€Free-breathing MOCO LGE leads to better image quality and faster scanning times in clinical practice. Heart, 2017, 103, A10-A11.	1.2	0
502	023â€Myocardial perfusion reserve falls in diabetes and with increasing age – a perfusion mapping study. Heart, 2017, 103, A19-A20.	1.2	0
503	024â€Spectrum and significance of CMR findings in cardiac transthyretin amyloidosis. Heart, 2017, 103, A20-A21.	1.2	0
504	008â€Demonstration of cardiac AL amyloidosis regression after succesful chemotherapy. a CMR study. Heart, 2017, 103, A7.1-A7.	1.2	0

#	Article	IF	CITATIONS
505	P187 IN SEVERE AORTIC STENOSIS, DECREASED SYSTEMIC VASCULAR RESISTANCE IS ASSOCIATED WITH A LARGER, THICKER WALLED VENTRICLE EXCEPT FOR THE SEPTUM. Artery Research, 2017, 20, 107.	0.3	0
506	49â€Predicting risk of scd in fabry disease: a single centre experience. Heart, 2017, 103, A38.2-A39.	1.2	0
507	Synthetic extracellular volume fractionâ€"state of play. Wiener Klinische Wochenschrift, 2018, 130, 165-167.	1.0	0
508	Proposed stages of phenotype development in cardiac Fabry disease: A prospective 182-patient study by cardiovascular magnetic resonance. Molecular Genetics and Metabolism, 2018, 123, S106-S107.	0.5	0
509	6 A new way to image infarction: dark blood late gadolinium enhancement vs conventional imaging for the detection of scar. , 2018, , .		0
510	3â€SPECT/CT quantification of DPD scintigraphy in cardiac amyloid. , 2018, , .		0
511	3â€Treatment response in cardiac al amyloidosis assessed by CMR: findings at 3 months, 6 months and 1 year post-chemotherapy. , 2018, , .		0
512	54â€Characterisation of systolic myocardial strain in patients with fabry disease., 2018,,.		0
513	21â€Proximal but not distal aortic stiffness explains blood pressure reduction associated with exercise training for a first time marathon. , 2018, , .		0
514	22â€Myocardial perfusion is influenced by age, gender, diabetes, myocardial fibrosis and the use of beta-blockers: a perfusion mapping study. , 2018, , .		0
515	23 MRI-conditionality has no impact on pacemaker and defibrillator lead parameter changes with MRI at 1.5 t. , 2018, , .		0
516	Relationship between endotoxin core, staphylococcal and varicella antibody levels and outcome following aortic valve replacement surgery: a prospective observational study. Perioperative Medicine (London, England), 2018, 7, 20.	0.6	0
517	3â€The detection of cardiac amyloidosis using extracellular volume quantification by computed tomography. , 2018, , .		0
518	Response by Kozor et al to Letter Regarding Article, "Left Ventricular Hypertrophy Revisited: Cell and Matrix Expansion Have Disease-Specific Relationshipsâ€. Circulation, 2018, 137, 2672-2673.	1.6	0
519	Does Fractal Analysis of the Right Side of the Heart Provide Insight into Pulmonary Hypertension?. Radiology, 2018, 288, 396-397.	3.6	0
520	Hypertrophic cardiomyopathy deserves better – ditch the 16 segments. Experimental Physiology, 2019, 104, 1591-1592.	0.9	0
521	New-onset heart failure: free-breathing motion-corrected late gadolinium enhancement rescues the endomyocardial fibrosis diagnosis. European Heart Journal, 2019, 40, 3951-3951.	1.0	0
522	The natural progression of cardiac involvement in Fabry disease. Molecular Genetics and Metabolism, 2019, 126, S148.	0.5	0

#	Article	IF	Citations
523	A multicentre study of cardiac device implantation, arrhythmic burden and risk factors in Fabry cardiomyopathy. Molecular Genetics and Metabolism, 2019, 126, S148-S149.	0.5	O
524	$11\hat{a}\in$ Evaluation of tube potential effects on atherosclerotic plaque assessment: in vivo assessment with intravascular ultrasound., 2019,,.		0
525	1â€Inflammatory cardiomyopathy in fabry disease. , 2019, , .		0
526	11â€Novice marathon training reverses vascular ageing. , 2019, , .		0
527	16 Myocardial extracellular volume in patients with aortic stenosis undergoing valve intervention: a <i>multicentre T1 mapping study</i> ., 2019, , .		0
528	17â€Fat water imaging for sub-epicardial gadolinium: enhancing the diagnosis of myocarditis. , 2019, , .		0
529	19â€Myocardial perfusion mapping in cardiac amyloidosis- unearthing the spectrum from infiltration to ischaemia. , 2019, , .		0
530	21â€Intracardiac thrombi in cardiac amyloidosis, a common finding. , 2019, , .		0
531	LEFT ATRIAL SIZE AND FUNCTION ASSESSMENT BY CARDIAC MAGNETIC RESONANCE IN THALASSEMIA MAJOR PATIENTS WITH DIFFERENT IRON OVERLOAD CONDITIONS. Journal of Hypertension, 2019, 37, e186.	0.3	O
532	The Myocardium in Aortic Stenosis Revisited. JACC: Cardiovascular Imaging, 2020, 13, 2270-2273.	2.3	0
533	Reply. Journal of the American College of Cardiology, 2020, 75, 2278-2279.	1.2	0
534	Top Cats Often Begin as Underdogs: The Ascent of Trabecular Fractal Analysis with Cardiac MRI. Radiology, 2021, 298, 80-81.	3.6	0
535	The Authors Reply:. JACC: Cardiovascular Imaging, 2021, 14, 882-883.	2.3	0
536	Adenosine perfusion MR imaging – a diagnostic aid for ectopic splenic tissue. Polish Archives of Internal Medicine, 2021, 131, 737-739.	0.3	0
537	93 Insulin resistance is associated with QT prolongation in the 1946 british birth cohort. , 2021, , .		0
538	190â€Association between carotid distensibility and heart rate variability in older age. , 2021, , .		0
539	The Relationship Between Oxygen Uptake and the Rate of Myocardial Deformation During Exercise. Bioengineered, 2021, 10, 85-93.	1.4	0
540	Childhood Bradycardia Associates With Atrioventricular Conduction Defects in Older Age: A Longitudinal Birth Cohort Study. Journal of the American Heart Association, 2021, 10, e021877.	1.6	0

#	Article	IF	Citations
541	Looking for the Right Diagnosis? Cardiovascular Magnetic Resonance Imaging Can Help Differentiate Cardiomyopathies. Heart Lung and Circulation, 2021, 31, 7-16.	0.2	O
542	3593 Myocardial contrast echocardiography accurately reflects transmurality of myocardial necrosis and predicts contractile reserve after acute myocardial infarction. European Heart Journal, 2003, 24, 699.	1.0	0
543	More on switching statins: Authors' reply. BMJ: British Medical Journal, 2006, 333, 655.2-656.	2.4	O
544	The case for a generic statin. Independent Nurse, 2006, 2006, .	0.0	0
545	Cardiovascular magnetic resonance for pericardial disease. Indian Journal of Radiology and Imaging, 2007, 17, 133.	0.3	0
546	Cardiac amyloid by cardiovascular magnetic resonance. BMJ Case Reports, 2009, 2009, bcr2006107078-bcr2006107078.	0.2	0
547	Update in Cardiomyopathies and Congestive Heart Failure. Neurology International, 2012, 2, 1.	0.2	0
548	Myocardial Hemosiderosis Correlates with Plasma NTBI Species That Represent Chelated Iron in Transfusion-Dependent Thalassemia. Blood, 2016, 128, 203-203.	0.6	0
549	Role of T1 Mapping As a Complementary Tool to T2* for Cardiac Iron Overload Assessment. Blood, 2016, 128, 3624-3624.	0.6	0
550	Reply. Journal of the American College of Cardiology, 2018, 71, 2984-2985.	1.2	0
551	T1 and T2 Mapping and Extracellular Volume in Cardiomyopathy. , 2019, , 391-399.e4.		0
552	12â€Myocardial inflammation and diffuse fibrosis underpin the electrophysiological derangements of the ageing human heart–A CMR-ECGI study. , 2021, , .		0
553	20â€Apical ischaemia is ubiquitous in apical hypertrophic cardiomyopathy and occurs before overt hypertrophy., 2021,,.		0
554	11â€A medical device-grade T2 phantom for quality assurance of inflammation imaging by CMR. , 2021, , .		0
555	Familial cardiomyopathy caused by a novel heterozygous mutation in the gene (c.1434dupG): a cardiac MRI-augmented segregation study. Acta Myologica, 2019, 38, 159-162.	1.5	0
556	Use of Rapid Cardiac Magnetic Resonance Imaging (rCMR) to guide chelation therapy in patients with transfusion-dependent thalassemia in India UMIMI Study. European Heart Journal Quality of Care & Clinical Outcomes, 2021, , .	1.8	0
557	Subclinical Hypertrophic Cardiomyopathy in Elite Athletes. JACC: Case Reports, 2022, 4, 94-98.	0.3	0
558	Response. Radiology, 2015, 277, 614.	3.6	0

#	Article	lF	CITATIONS
559	$106\hat{a} \in f$ The effective study: development and application of a question-driven, time-effective cardiac magnetic resonance scanning protocol. European Heart Journal Supplements, 2021, 23, .	0.0	O
560	Saturation-pulse prepared heart-rate independent inversion-recovery (SAPPHIRE) biventricular T1 mapping: inter-field strength, head-to-head comparison of diastolic, systolic and dark-blood measurements. BMC Medical Imaging, 2022, 22, .	1.4	0