List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of nafcillin sodium monohydrate from aqueous solution by hydrogels containing nanocellulose: An experimental and theoretical study. Journal of Molecular Liquids, 2022, 347, 117946.	4.9	5
2	Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles. Carbohydrate Polymers, 2022, 276, 118780.	10.2	20
3	Chemical characterization of sapwood and heartwood of <i>Fraxinus angustifolia</i> growing in Algeria. Journal of Wood Chemistry and Technology, 2022, 42, 26-36.	1.7	5
4	Green fractionation approaches for isolation of biopolymers and the critical technical challenges. Industrial Crops and Products, 2022, 177, 114451.	5.2	19
5	Digital light processing (DLP) 3D-fabricated antimicrobial hydrogel with a sustainable resin of methacrylated woody polysaccharides and hybrid silver-lignin nanospheres. Green Chemistry, 2022, 24, 2129-2145.	9.0	27
6	Nanocellulose bio-based composites for the removal of methylene blue from water: An experimental and theoretical exploration. Journal of Molecular Liquids, 2022, 357, 119089.	4.9	6
7	Valorization of waste bark for biorefineries: chemical characterization of <i>Eucalyptus camaldulensis</i> inner and outer barks. Holzforschung, 2022, 76, 285-293.	1.9	0
8	Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly. ACS Applied Materials & Interfaces, 2021, 13, 26308-26317.	8.0	13
9	Bio-Based Hydrogels With Ion Exchange Properties Applied to Remove Cu(II), Cr(VI), and As(V) Ions From Water. Frontiers in Bioengineering and Biotechnology, 2021, 9, 656472.	4.1	7
10	Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science. Cellulose, 2021, 28, 8719-8734.	4.9	21
11	Optimization of the extraction of galactoglucomannans from <i>Pinus halepensis</i> . Holzforschung, 2021, 75, 563-573.	1.9	2
12	Fractionation of Lignin with Decreased Heterogeneity: Based on a Detailed Characteristics Study of Sequentially Extracted Softwood Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 13862-13873.	6.7	20
13	Facile fractionation of bamboo hydrolysate and characterization of isolated lignin and lignin-carbohydrate complexes. Holzforschung, 2021, 75, 399-408.	1.9	5
14	Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Separation and Purification Technology, 2020, 242, 116523.	7.9	54
15	Intake of Radionuclides in the Trees of Fukushima Forests 4. Binding of Radioiodine to Xyloglucan. Forests, 2020, 11, 957.	2.1	1
16	In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus) Tj ETQq0 0 Fibroporia vaillantii. Wood Science and Technology, 2020, 54, 1645-1662.	0 rgBT /Ov 3.2	verlock 10 Tf 21
17	Larch Wood Residues Valorization through Extraction and Utilization of High Value-Added Products. Polymers, 2020, 12, 359.	4.5	9

¹⁸ Enhancement of Norway spruce bark side-streams: Modification of bioactive and protective properties of stilbenoid-rich extracts by UVA-irradiation. Industrial Crops and Products, 2020, 145, 112150.

5.2 24

STEFAN WILLFöR

#	Article	IF	CITATIONS
19	Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification. Biomolecules, 2020, 10, 1363.	4.0	19
20	Structural and Thermal Analysis of Softwood Lignins from a Pressurized Hot Water Extraction Biorefinery Process and Modified Derivatives. Molecules, 2019, 24, 335.	3.8	9
21	Characterization of waste bio-oil as an alternate source of renewable fuel for marine engines. Biofuels, 2019, , 1-10.	2.4	6
22	Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chemical Engineering Journal, 2019, 372, 82-91.	12.7	176
23	Environmentally-compatible alkyd paints stabilized by wood hemicelluloses. Industrial Crops and Products, 2019, 133, 212-220.	5.2	37
24	Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. ACS Applied Materials & Interfaces, 2019, 11, 12389-12400.	8.0	65
25	On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. ACS Applied Materials & Interfaces, 2019, 11, 8838-8848.	8.0	189
26	From Biomass to Nanomaterials: A Green Procedure for Preparation of Holistic Bamboo Multifunctional Nanocomposites Based On Formic Acid Rapid Fractionation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6592-6600.	6.7	33
27	The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acids. Molecules, 2019, 24, 4391.	3.8	7
28	Isolation of pure pinosylvins from industrial knotwood residue with non-chlorinated solvents. Holzforschung, 2019, 73, 475-484.	1.9	7
29	Valorization of Lignin–Carbohydrate Complexes from Hydrolysates of Norway Spruce: Efficient Separation, Structural Characterization, and Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 1447-1456.	6.7	25
30	Knockdown of PCBER1, a gene of neolignan biosynthesis, resulted in increased poplar growth. Planta, 2019, 249, 515-525.	3.2	13
31	Chemical characterization of <i>Pinus halepensis</i> sapwood and heartwood. Wood Material Science and Engineering, 2019, 14, 157-164.	2.3	19
32	Structural changes of bamboo-derived lignin in an integrated process of autohydrolysis and formic acid inducing rapid delignification. Industrial Crops and Products, 2018, 115, 194-201.	5.2	50
33	Characteristics of Hot Water Extracts from the Bark of Cultivated Willow (<i>Salix</i> sp.). ACS Sustainable Chemistry and Engineering, 2018, 6, 5566-5573.	6.7	37
34	Enzymatic hydrolysis of biomimetic bacterial cellulose–hemicellulose composites. Carbohydrate Polymers, 2018, 190, 95-102.	10.2	25
35	Novel biorenewable composite of wood polysaccharide and polylactic acid for three dimensional printing. Carbohydrate Polymers, 2018, 187, 51-58.	10.2	83
36	Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 5663-5680.	6.7	183

#	Article	IF	CITATIONS
37	Thermally induced degradation of NaCMC in water and effects of NaHCO 3 on acid formation and charge. Food Hydrocolloids, 2018, 74, 32-36.	10.7	5
38	Analysis of extractives from <i>Pinus halepensis</i> and <i>Eucalyptus camaldulensis</i> as predominant trees in Algeria. Holzforschung, 2018, 72, 97-104.	1.9	21
39	Phenolic residues in spruce galactoglucomannans improve stabilization of oil-in-water emulsions. Journal of Colloid and Interface Science, 2018, 512, 536-547.	9.4	39
40	Potentially Immunogenic Contaminants in Wood-Based and Bacterial Nanocellulose: Assessment of Endotoxin and (1,3)-12- <scp>d</scp> -Glucan Levels. Biomacromolecules, 2018, 19, 150-157.	5.4	20
41	Hemicelluloses from stone pine, holm oak, and Norway spruce with subcritical water extraction â^' comparative study with characterization and kinetics. Journal of Supercritical Fluids, 2018, 133, 647-657.	3.2	34
42	3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 2018, 6, 7066-7075.	5.8	129
43	Insights on the distribution of substitutions in spruce galactoglucomannan and its derivatives using integrated chemo-enzymatic deconstruction, chromatography and mass spectrometry. International Journal of Biological Macromolecules, 2018, 112, 616-625.	7.5	7
44	One-Step Fractionation of the Main Components of Bamboo by Formic Acid-based Organosolv Process Under Pressure. Journal of Wood Chemistry and Technology, 2018, 38, 170-182.	1.7	22
45	Chapter 12. Tuning Microscopic and Mechanical Properties of Bio-based Aerogels. RSC Green Chemistry, 2018, , 201-219.	0.1	0
46	On importance of impurities, potential leachables and extractables in algal nanocellulose for biomedical use. Carbohydrate Polymers, 2017, 172, 11-19.	10.2	38
47	Mild Oxalicâ€Acid atalyzed Hydrolysis as a Novel Approach to Prepare Cellulose Nanocrystals. ChemNanoMat, 2017, 3, 109-119.	2.8	45
48	Revealing the structure of bamboo lignin obtained by formic acid delignification at different pressure levels. Industrial Crops and Products, 2017, 108, 864-871.	5.2	51
49	Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Advanced Healthcare Materials, 2017, 6, 1700258.	7.6	38
50	Aqueous Extraction of the Sulfated Polysaccharide Ulvan from the Green Alga Ulva rigida—Kinetics and Modeling. Bioenergy Research, 2017, 10, 915-928.	3.9	13
51	The use of calcium hydroxide as alkali source in peroxide bleaching of kraft pulp. Nordic Pulp and Paper Research Journal, 2017, 32, 444-451.	0.7	3
52	Antibacterial effects of wood structural components and extractives from Pinus sylvestris and Picea abies on methicillin-resistant Staphylococcus aureus and Escherichia coli O157:H7. BioResources, 2017, 12, 7601-7614.	1.0	20
53	Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydrate Polymers, 2016, 148, 259-271.	10.2	116
54	Profiling the substitution pattern of xyloglucan derivatives by integrated enzymatic hydrolysis, hydrophilic-interaction liquid chromatography and mass spectrometry. Journal of Chromatography A, 2016, 1463, 110-120.	3.7	13

#	Article	IF	CITATIONS
55	Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23, 3129-3143.	4.9	159
56	Reactions between peracetic acid and lipophilic extractives – methodologies and implications in post bleaching of kraft pulps. Holzforschung, 2016, 70, 747-754.	1.9	2
57	Chemical Composition and Content of Lipophilic Seed Extractives of Some <i>Abies</i> and <i>Picea</i> Species. Chemistry and Biodiversity, 2016, 13, 1194-1201.	2.1	5
58	Functionalized galactoglucomannanâ€based hydrogels for the removal of metal cations from aqueous solutions. Journal of Applied Polymer Science, 2016, 133, .	2.6	14
59	Softwood-based sponge gels. Cellulose, 2016, 23, 3221-3238.	4.9	17
60	Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung, 2016, 70, 633-640.	1.9	12
61	Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal Research, 2016, 13, 141-147.	4.6	59
62	Acid hydrolysis of <i>O</i> -acetyl-galactoglucomannan in a continuous tube reactor: a new approach to sugar monomer production. Holzforschung, 2016, 70, 187-194.	1.9	19
63	Two-Stage Hot-Water Extraction of Galactoglucomannans from Spruce Wood. Journal of Wood Chemistry and Technology, 2016, 36, 140-156.	1.7	14
64	Bark Extractives and Suberin Monomers from Arbutus andrachne and Platanus orientalis. BioResources, 2015, 11, .	1.0	5
65	Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose. Nordic Pulp and Paper Research Journal, 2015, 30, 373-384.	0.7	13
66	In-line high-temperature pH control during hot-water extraction of wood. Industrial Crops and Products, 2015, 67, 114-120.	5.2	7
67	Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. Journal of Materials Science, 2015, 50, 3189-3199.	3.7	38
68	Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydrate Polymers, 2015, 133, 605-612.	10.2	184
69	Lignin and Other Aromatic Substances Released from Spruce Wood During Pressurized Hot-Water Extraction, Part 1: Extraction, Fractionation and Physico-Chemical Characterization. Journal of Wood Chemistry and Technology, 2015, 35, 387-397.	1.7	13
70	Lignin and Other Aromatic Substances Released from Spruce Wood During Pressurized Hot-Water Extraction, Part 2: Structural Characterization. Journal of Wood Chemistry and Technology, 2015, 35, 398-411.	1.7	4
71	Lignin isolation from spruce wood with low concentration aqueous alkali at high temperature and pressure: influence of hot-water pre-extraction. Green Chemistry, 2015, 17, 5058-5068.	9.0	25
72	A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 31-61.	2.7	461

#	Article	IF	CITATIONS
73	Pressurized hot water flow-through extraction of birch sawdust – Effects of sawdust density and sawdust size. Nordic Pulp and Paper Research Journal, 2014, 29, 547-556.	0.7	10
74	O-acetyl galactoglucomannan esters for barrier coatings. Cellulose, 2014, 21, 4497-4509.	4.9	30
75	Comparative evaluation of various lignin determination methods on hemicellulose-rich fractions of spruce and birch obtained by pressurized hot-water extraction (PHWE) and subsequent ultrafiltration (UF). Holzforschung, 2014, 68, 971-979.	1.9	13
76	Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydrate Polymers, 2014, 100, 46-54.	10.2	28
77	Cationised O-acetyl galactoglucomannans: Synthesis and characterisation. Carbohydrate Polymers, 2014, 99, 755-764.	10.2	14
78	Heat Treatment and Chemical Composition of Fatty Acids and Rosin Acids Mixtures: Effects on Their Thermal Properties and Morphology. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1035-1046.	1.9	3
79	Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Science and Technology, 2014, 48, 311-323.	3.2	23
80	Kinetic modeling of hemicellulose hydrolysis in the presence of homogeneous and heterogeneous catalysts. AICHE Journal, 2014, 60, 1066-1077.	3.6	37
81	Modification of nanofibrillated cellulose using amphiphilic block-structured galactoglucomannans. Carbohydrate Polymers, 2014, 110, 163-172.	10.2	34
82	Hemicellulose hydrolysis and hydrolytic hydrogenation over proton- and metal modified beta zeolites. Microporous and Mesoporous Materials, 2014, 189, 189-199.	4.4	37
83	Non-cellulosic heteropolysaccharides from sugarcane bagasse – Sequential extraction with pressurized hot water and alkaline peroxide at different temperatures. Bioresource Technology, 2014, 155, 446-450.	9.6	9
84	Spruce Hemicellulose for Chemicals Using Aqueous Extraction: Kinetics, Mass Transfer, and Modeling. Industrial & Engineering Chemistry Research, 2014, 53, 6341-6350.	3.7	47
85	Impact of Torrefaction on the Chemical Structure of Birch Wood. Energy & Fuels, 2014, 28, 3863-3872.	5.1	55
86	High-temperature pH measuring during hot-water extraction of hemicelluloses from wood. Industrial Crops and Products, 2014, 61, 9-15.	5.2	12
87	Obtaining Spruce Hemicelluloses of Desired Molar Mass by using Pressurized Hot Water Extraction. ChemSusChem, 2014, 7, 2947-2953.	6.8	42
88	Hemicellulose Hydrolysis in the Presence of Heterogeneous Catalysts. Topics in Catalysis, 2014, 57, 1470-1475.	2.8	4
89	Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydrate Polymers, 2014, 111, 797-805.	10.2	70
90	Formation of oxalic acid in alkaline peroxide treatment of different wood components. Holzforschung, 2014, 68, 393-400.	1.9	3

#	Article	IF	CITATIONS
91	Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose, 2014, 21, 2587-2598.	4.9	61
92	Flow cytometry as a tool to assess inhibitor performance for calcium oxalate scale control. Nordic Pulp and Paper Research Journal, 2014, 29, 663-672.	0.7	2
93	Acid hydrolysis of O-acetyl-galactoglucomannan. Catalysis Science and Technology, 2013, 3, 116-122.	4.1	22
94	Effects of pressurized hot water extraction on the nanoscale structure of birch sawdust. Cellulose, 2013, 20, 2335-2347.	4.9	31
95	Evaluation of selective extraction methods for recovery of polyphenols from pine. Holzforschung, 2013, 67, 843-851.	1.9	26
96	Anionic Polysaccharides as Templates for the Synthesis of Conducting Polyaniline and as Structural Matrix for Conducting Biocomposites. Macromolecular Rapid Communications, 2013, 34, 1056-1061.	3.9	20
97	Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor – Effects of wood particle size. Bioresource Technology, 2013, 143, 212-220.	9.6	65
98	The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. International Journal of Food Microbiology, 2013, 164, 99-107.	4.7	73
99	Extraction of low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood with compressed CO2. Journal of Supercritical Fluids, 2013, 81, 193-199.	3.2	32
100	Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking. Enzyme and Microbial Technology, 2013, 52, 303-311.	3.2	30
101	Wood decay caused byHeterobasidion parviporumin juvenile wood specimens from normal- and narrow-crowned Norway spruce. Scandinavian Journal of Forest Research, 2013, 28, 331-339.	1.4	7
102	Synthesis of SET–LRPâ€induced galactoglucomannanâ€diblock copolymers. Journal of Polymer Science Part A, 2013, 51, 5100-5110.	2.3	21
103	Targeted functionalization of spruce <i>O</i> â€acetyl galactoglucomannans—2,2,6,6â€ŧetramethylpiperidinâ€1â€oxylâ€oxidation and carbodiimideâ€mediated amidation. Journal of Applied Polymer Science, 2013, 130, 3122-3129.	2.6	13
104	Water-Soluble Components of Pinus pinaster Wood. BioResources, 2013, 8, .	1.0	18
105	Amphiphilic Spruce Galactoglucomannan Derivatives Based on Naturally-Occurring Fatty Acids. BioResources, 2013, 8, .	1.0	15
106	Pressurized Hot Water Flow-through Extraction of Birch Sawdust with Acetate pH Buffer. BioResources, 2013, 8, .	1.0	10
107	The effect of storage conditions on extraction efficiency and identification of extractives in wood-containing paper. Nordic Pulp and Paper Research Journal, 2013, 28, 541-546.	0.7	5
108	Sample pretreatment for oxalate analysis and the effect of peroxide bleaching parameters on oxalate formation. Nordic Pulp and Paper Research Journal, 2013, 28, 42-50.	0.7	0

#	Article	IF	CITATIONS
109	Gold Catalysts for Selective Aerobic Oxidation of the Lignan Hydroxymatairesinol to Oxomatairesinol: Catalyst Deactivation and Regeneration. Catalysis Letters, 2012, 142, 1011-1019.	2.6	9
110	Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung, 2012, 66, 1025-1025.	1.9	11
111	What is the composition of AIR? Pyrolysis-GC–MS characterization of acid-insoluble residue from fresh litter and organic horizons under boreal forests in southern Finland. Geoderma, 2012, 179-180, 63-72.	5.1	16
112	Functional and Anionic Cellulose-Interacting Polymers by Selective Chemo-Enzymatic Carboxylation of Galactose-Containing Polysaccharides. Biomacromolecules, 2012, 13, 2418-2428.	5.4	50
113	Antithrombotic properties of sulfated wood-derived galactoglucomannans. Holzforschung, 2012, 66, 149-154.	1.9	23
114	Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung, 2012, 66, 809-815.	1.9	27
115	BIOREFINERY. Pressurised hot water extraction of acetylated xylan from birch sawdust. Nordic Pulp and Paper Research Journal, 2012, 27, 680-688.	0.7	35
116	Extraction and chemical characterization of Norway spruce inner and outer bark. Nordic Pulp and Paper Research Journal, 2012, 27, 6-17.	0.7	85
117	Hydrophobication and characterisation of O-acetyl-galactoglucomannan for papermaking and barrier applications. Carbohydrate Research, 2012, 352, 151-158.	2.3	25
118	Paper chemistry: Calcium oxalate - a source of "hickey" problems - A literature review on oxalate formation, analysis and scale control. Nordic Pulp and Paper Research Journal, 2011, 26, 263-282.	0.7	11
119	Oxidation of lignans and lignin model compounds by laccase in aqueous solvent systems. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 122-129.	1.8	37
120	Synthesis of Sugars by Hydrolysis of Hemicelluloses- A Review. Chemical Reviews, 2011, 111, 5638-5666.	47.7	350
121	Selective Hydrolysis of Arabinogalactan into Arabinose and Galactose Over Heterogeneous Catalysts. Catalysis Letters, 2011, 141, 408-412.	2.6	44
122	Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nordic Pulp and Paper Research Journal, 2011, 26, 1-12.	0.7	34
123	Kinetics of Acid Hydrolysis of Arabinogalactans. International Journal of Chemical Reactor Engineering, 2010, 8, .	1.1	14
124	Glucomannan composite films with cellulose nanowhiskers. Cellulose, 2010, 17, 69-81.	4.9	60
125	Scots pine (Pinus sylvestris) bark composition and degradation by fungi: Potential substrate for bioremediation. Bioresource Technology, 2010, 101, 2203-2209.	9.6	70
126	Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydrate Research, 2010, 345, 810-816.	2.3	89

#	Article	IF	CITATIONS
127	Metal-mediated allylation of enzymatically oxidized methyl α-d-galactopyranoside. Carbohydrate Research, 2010, 345, 2610-2615.	2.3	13
128	Lipophilic Extractives in <i>Populus × euramericana</i> "Guariento―Stemwood and Bark. Journal of Wood Chemistry and Technology, 2010, 30, 105-117.	1.7	14
129	Comparison of Microencapsulation Properties of Spruce Galactoglucomannans and Arabic Gum Using a Model Hydrophobic Core Compound. Journal of Agricultural and Food Chemistry, 2010, 58, 981-989.	5.2	12
130	Oxidation of Polysaccharides by Galactose Oxidase. Journal of Agricultural and Food Chemistry, 2010, 58, 262-271.	5.2	89
131	Structural Investigation of Biologically Active Phenolic Compounds Isolated from European Tree Species. Molecules, 2009, 14, 4147-4158.	3.8	8
132	Extractives in bark of different conifer species growing in Pakistan. Holzforschung, 2009, 63, 551-558.	1.9	45
133	Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides–A comparison between different hydrolysis and subsequent chromatographic analytical techniques. Industrial Crops and Products, 2009, 29, 571-580.	5.2	234
134	Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydrate Polymers, 2009, 75, 498-504.	10.2	59
135	Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydrate Polymers, 2009, 77, 851-857.	10.2	184
136	Analysis of galactoglucomannans from spruce wood by capillary electrophoresis. Cellulose, 2009, 16, 1089-1097.	4.9	10
137	A novel and efficient synthesis of highly oxidized lignans by a methyltrioxorhenium/hydrogen peroxide catalytic system. Studies on their apoptogenic and antioxidant activity. Bioorganic and Medicinal Chemistry, 2009, 17, 5676-5682.	3.0	18
138	Mannans as stabilizers of oil-in-water beverage emulsions. LWT - Food Science and Technology, 2009, 42, 849-855.	5.2	74
139	Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans. Holzforschung, 2009, 63,	1.9	25
140	Variation of lignans in Norway spruce (Picea abies [L.] Karst.) knotwood: within-stem variation and the effect of fertilisation at two experimental sites in Finland. Trees - Structure and Function, 2008, 22, 317-328.	1.9	26
141	Spruce-derived mannans – A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydrate Polymers, 2008, 72, 197-210.	10.2	222
142	Norway spruce galactoglucomannans exhibiting immunomodulating and radical-scavenging activities. International Journal of Biological Macromolecules, 2008, 42, 1-5.	7.5	68
143	Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans. Journal of Agricultural and Food Chemistry, 2008, 56, 2429-2435.	5.2	56
144	Knotwood as a window to the indirect measurement of the decay resistance of Scots pine heartwood. Holzforschung, 2007, 61, 600-604.	1.9	18

STEFAN WILLFöR

#	Article	IF	CITATIONS
145	Spectral Characterization of Eucalyptus Wood. Applied Spectroscopy, 2007, 61, 1168-1177.	2.2	249
146	A Novel Antioxidant Phenyl Disaccharide from Populus tremula Knotwood. Molecules, 2007, 12, 205-217.	3.8	5
147	Antimicrobial and cytotoxic knotwood extracts and related pure compounds and their effects on food-associated microorganisms. International Journal of Food Microbiology, 2007, 115, 235-243.	4.7	111
148	Headspace-SPME Analysis of the Sapwood and Heartwood of <i>Picea Abies, Pinus Sylvestris</i> and <i>Larix Decidua</i> . Journal of Essential Oil Research, 2007, 19, 125-133.	2.7	26
149	Wood Resin in Bigtooth and Quaking Aspen Wood and Knots. Journal of Wood Chemistry and Technology, 2005, 25, 27-39.	1.7	8
150	Bioactive phenolic substances in industrially important tree species. Part 4: Identification of two new 7-hydroxy divanillyl butyrolactol lignans in some spruce, fir, and pine species. Holzforschung, 2005, 59, 413-417.	1.9	27
151	Isolation and characterisation of water soluble polysaccharides from Norway spruce and Scots pine. Wood Science and Technology, 2004, 38, 173-179.	3.2	83
152	Bioactive phenolic substances in industrially important tree species. Part 2: Knots and stemwood of fir species. Holzforschung, 2004, 58, 650-659.	1.9	51
153	Knots in trees – A new rich source of lignans. Phytochemistry Reviews, 2003, 2, 331-340.	6.5	112
154	Weakening of paper strength by wood resin. Nordic Pulp and Paper Research Journal, 2000, 15, 46-53.	0.7	38