
Kristian H MÃ,ller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. Environmental Science & Technology, 2022, 56, 2213-2224.	10.0	8
2	Hydrotrioxide (ROOOH) formation in the atmosphere. Science, 2022, 376, 979-982.	12.6	16
3	Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis. Journal of Physical Chemistry A, 2021, 125, 669-680.	2.5	26
4	Trimethylamine Outruns Terpenes and Aromatics in Atmospheric Autoxidation. Journal of Physical Chemistry A, 2021, 125, 4454-4466.	2.5	11
5	Atmospheric Fate of the CH ₃ SOO Radical from the CH ₃ S + O ₂ Equilibrium. Journal of Physical Chemistry A, 2021, 125, 8933-8941.	2.5	15
6	Atmospheric Chemistry of CH ₃ OCF ₂ CHF ₂ . Journal of Physical Chemistry A, 2021, 125, 10640-10648.	2.5	3
7	Acetonyl Peroxy and Hydro Peroxy Self- and Cross-Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product. Journal of Physical Chemistry A, 2020, 124, 8128-8143.	2.5	7
8	SO ₂ formation and peroxy radical isomerization in the atmospheric reaction of OH radicals with dimethyl disulfide. Chemical Communications, 2020, 56, 13634-13637.	4.1	18
9	New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. Environmental Science & amp; Technology, 2020, 54, 13467-13477.	10.0	32
10	Atmospheric Autoxidation of Amines. Environmental Science & amp; Technology, 2020, 54, 11087-11099.	10.0	33
11	Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1‑hydroxy‑1-peroxypentyl radical. Combustion and Flame, 2020, 219, 20-32.	5.2	15
12	Double Bonds Are Key to Fast Unimolecular Reactivity in First-Generation Monoterpene Hydroxy Peroxy Radicals. Journal of Physical Chemistry A, 2020, 124, 2885-2896.	2.5	37
13	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	7.1	118
14	Formation of Highly Oxidized Molecules from NO ₃ Radical Initiated Oxidation of Δ-3-Carene: A Mechanistic Study. ACS Earth and Space Chemistry, 2019, 3, 1460-1470.	2.7	28
15	Thermalized Epoxide Formation in the Atmosphere. Journal of Physical Chemistry A, 2019, 123, 10620-10630.	2.5	11
16	Stereoselectivity in Atmospheric Autoxidation. Journal of Physical Chemistry Letters, 2019, 10, 6260-6266.	4.6	19
17	Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of α-Pinene and β-Pinene by Hydroxyl Radicals. Journal of Physical Chemistry A, 2019, 123, 1661-1674.	2.5	75
18	The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation. Journal of Physical Chemistry A, 2019, 123, 920-932.	2.5	66

Kristian H MÃ,ller

#	Article	IF	CITATIONS
19	Hybridization of Nitrogen Determines Hydrogen-Bond Acceptor Strength: Gas-Phase Comparison of Redshifts and Equilibrium Constants. Journal of Physical Chemistry A, 2018, 122, 3899-3908.	2.5	8
20	Computational Investigation of RO ₂ + HO ₂ and RO ₂ + RO ₂ Reactions of Monoterpene Derived First-Generation Peroxy Radicals Leading to Radical Recycling. Journal of Physical Chemistry A, 2018, 122, 9542-9552.	2.5	19
21	Kinetics and Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide. Journal of Physical Chemistry A, 2018, 122, 6292-6302.	2.5	33
22	Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields From α-Pinene + NO ₃ . Journal of Physical Chemistry Letters, 2017, 8, 2826-2834.	4.6	50
23	Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors. Journal of Physical Chemistry A, 2017, 121, 2951-2959.	2.5	29
24	lsomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. Environmental Science & amp; Technology, 2017, 51, 4978-4987.	10.0	53
25	Ultraviolet Spectroscopy of the Gas Phase Hydration of Methylglyoxal. ACS Earth and Space Chemistry, 2017, 1, 345-352.	2.7	19
26	Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions. Journal of Physical Chemistry A, 2016, 120, 10072-10087.	2.5	91
27	Gas Phase Detection of the NH–P Hydrogen Bond and Importance of Secondary Interactions. Journal of Physical Chemistry A, 2015, 119, 10988-10998.	2.5	53