Kristian H Møller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471300/publications.pdf

Version: 2024-02-01

27	893	17 h-index	27
papers	citations		g-index
30	30	30	1119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	3.3	118
2	Cost-Effective Implementation of Multiconformer Transition State Theory for Peroxy Radical Hydrogen Shift Reactions. Journal of Physical Chemistry A, 2016, 120, 10072-10087.	1.1	91
3	Unimolecular Reactions of Peroxy Radicals Formed in the Oxidation of \hat{l}_{\pm} -Pinene and \hat{l}^{2} -Pinene by Hydroxyl Radicals. Journal of Physical Chemistry A, 2019, 123, 1661-1674.	1.1	75
4	The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation. Journal of Physical Chemistry A, 2019, 123, 920-932.	1.1	66
5	Gas Phase Detection of the NH–P Hydrogen Bond and Importance of Secondary Interactions. Journal of Physical Chemistry A, 2015, 119, 10988-10998.	1.1	53
6	Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields. Environmental Science & Environmental Science & 2017, 51, 4978-4987.	4.6	53
7	Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields From α-Pinene + NO ₃ . Journal of Physical Chemistry Letters, 2017, 8, 2826-2834.	2.1	50
8	Double Bonds Are Key to Fast Unimolecular Reactivity in First-Generation Monoterpene Hydroxy Peroxy Radicals. Journal of Physical Chemistry A, 2020, 124, 2885-2896.	1,1	37
9	Kinetics and Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide. Journal of Physical Chemistry A, 2018, 122, 6292-6302.	1.1	33
10	Atmospheric Autoxidation of Amines. Environmental Science & Environmental Scie	4.6	33
11	New Insights into the Radical Chemistry and Product Distribution in the OH-Initiated Oxidation of Benzene. Environmental Science & Environmental Scien	4.6	32
12	Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors. Journal of Physical Chemistry A, 2017, 121, 2951-2959.	1,1	29
13	Formation of Highly Oxidized Molecules from NO ₃ Radical Initiated Oxidation of Î"-3-Carene: A Mechanistic Study. ACS Earth and Space Chemistry, 2019, 3, 1460-1470.	1.2	28
14	Unimolecular Reactions Following Indoor and Outdoor Limonene Ozonolysis. Journal of Physical Chemistry A, 2021, 125, 669-680.	1.1	26
15	Ultraviolet Spectroscopy of the Gas Phase Hydration of Methylglyoxal. ACS Earth and Space Chemistry, 2017, 1, 345-352.	1.2	19
16	Computational Investigation of RO ₂ + HO ₂ and RO ₂ + RO ₂ Reactions of Monoterpene Derived First-Generation Peroxy Radicals Leading to Radical Recycling. Journal of Physical Chemistry A, 2018, 122, 9542-9552.	1.1	19
17	Stereoselectivity in Atmospheric Autoxidation. Journal of Physical Chemistry Letters, 2019, 10, 6260-6266.	2.1	19
18	SO ₂ formation and peroxy radical isomerization in the atmospheric reaction of OH radicals with dimethyl disulfide. Chemical Communications, 2020, 56, 13634-13637.	2.2	18

#	Article	IF	CITATIONS
19	Hydrotrioxide (ROOOH) formation in the atmosphere. Science, 2022, 376, 979-982.	6.0	16
20	Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1â€'hydroxyâ€'1-peroxypentyl radical. Combustion and Flame, 2020, 219, 20-32.	2.8	15
21	Atmospheric Fate of the CH ₃ SOO Radical from the CH ₃ S + O ₂ Equilibrium. Journal of Physical Chemistry A, 2021, 125, 8933-8941.	1.1	15
22	Thermalized Epoxide Formation in the Atmosphere. Journal of Physical Chemistry A, 2019, 123, 10620-10630.	1.1	11
23	Trimethylamine Outruns Terpenes and Aromatics in Atmospheric Autoxidation. Journal of Physical Chemistry A, 2021, 125, 4454-4466.	1.1	11
24	Hybridization of Nitrogen Determines Hydrogen-Bond Acceptor Strength: Gas-Phase Comparison of Redshifts and Equilibrium Constants. Journal of Physical Chemistry A, 2018, 122, 3899-3908.	1.1	8
25	Pathways to Highly Oxidized Products in the Δ3-Carene + OH System. Environmental Science & Emp; Technology, 2022, 56, 2213-2224.	4.6	8
26	Acetonyl Peroxy and Hydro Peroxy Self- and Cross-Reactions: Kinetics, Mechanism, and Chaperone Enhancement from the Perspective of the Hydroxyl Radical Product. Journal of Physical Chemistry A, 2020, 124, 8128-8143.	1.1	7
27	Atmospheric Chemistry of CH ₃ OCF ₂ CHF ₂ . Journal of Physical Chemistry A, 2021, 125, 10640-10648.	1.1	3