
Clay S Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1471130/publications.pdf Version: 2024-02-01

CLAV S RENNETT

#	Article	IF	CITATIONS
1	Methods for 2-Deoxyglycoside Synthesis. Chemical Reviews, 2018, 118, 7931-7985.	23.0	235
2	A Reagent-Controlled S _N 2-Glycosylation for the Direct Synthesis of β-Linked 2-Deoxy-Sugars. Journal of the American Chemical Society, 2014, 136, 5740-5744.	6.6	136
3	Reagent Controlled β-Specific Dehydrative Glycosylation Reactions with 2-Deoxy-Sugars. Organic Letters, 2013, 15, 4170-4173.	2.4	73
4	Cyclopropenium Cation Promoted Dehydrative Glycosylations Using 2-Deoxy- and 2,6-Dideoxy-Sugar Donors. Organic Letters, 2011, 13, 2814-2817.	2.4	64
5	Reagentâ€Controlled αâ€Selective Dehydrative Glycosylation of 2,6â€Dideoxy―and 2,3,6â€Trideoxy Sugars. Angewandte Chemie - International Edition, 2016, 55, 10088-10092.	7.2	54
6	Mild Method for 2-Naphthylmethyl Ether Protecting Group Removal Using a Combination of 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and β-Pinene. Journal of Organic Chemistry, 2017, 82, 3926-3934.	1.7	53
7	Recent Developments in Stereoselective Chemical Glycosylation. Asian Journal of Organic Chemistry, 2019, 8, 802-813.	1.3	52
8	Principles of modern solid-phase oligosaccharide synthesis. Organic and Biomolecular Chemistry, 2014, 12, 1686.	1.5	44
9	Halide Effects on Cyclopropenium Cation Promoted Glycosylation with Deoxy Sugars: Highly αâ€Selective Glycosylations Using a 3,3â€Dibromoâ€1,2â€diphenylcyclopropene Promoter. European Journal of Organic Chemistry, 2012, 2012, 4927-4930.	1.2	43
10	Fucosylated Molecules Competitively Interfere with Cholera Toxin Binding to Host Cells. ACS Infectious Diseases, 2018, 4, 758-770.	1.8	42
11	Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits S _N 2 Glycosylations. Journal of the American Chemical Society, 2019, 141, 16743-16754.	6.6	41
12	Matched/Mismatched Interactions in Chiral BrÃ,nsted Acid-Catalyzed Glycosylation Reactions with 2-Deoxy-Sugar Trichloroacetimidate Donors. Journal of Carbohydrate Chemistry, 2014, 33, 423-434.	0.4	40
13	An Air- and Water-Stable lodonium Salt Promoter for Facile Thioglycoside Activation. Organic Letters, 2014, 16, 1780-1782.	2.4	37
14	An Improved Approach to the Direct Construction of 2â€Deoxyâ€Î²â€Linked Sugars: Applications to Oligosaccharide Synthesis. Chemistry - A European Journal, 2018, 24, 7610-7614.	1.7	35
15	Synthesis of the Hexasaccharide Fragment of Landomycin A Using a Mild, Reagent-Controlled Approach. Organic Letters, 2019, 21, 3674-3677.	2.4	28
16	Challenges in the Conversion of Manual Processes to Machine-Assisted Syntheses: Activation of Thioglycoside Donors with Aryl(trifluoroethyl)iodonium Triflimide. Organic Letters, 2018, 20, 800-803.	2.4	27
17	Reagent-Controlled Synthesis of the Branched Trisaccharide Fragment of the Antibiotic Saccharomicin B. Organic Letters, 2018, 20, 3413-3417.	2.4	25
18	Reagent Controlled Direct Dehydrative Glycosylation with 2-Deoxy Sugars: Construction of the Saquayamycin Z Pentasaccharide. Organic Letters, 2019, 21, 5922-5927.	2.4	22

CLAY S BENNETT

#	Article	IF	CITATIONS
19	Automated, Multistep Continuousâ€Flow Synthesis of 2,6â€Dideoxy and 3â€Aminoâ€2,3,6â€trideoxy Monosaccharide Building Blocks. Angewandte Chemie - International Edition, 2021, 60, 23171-23175.	7.2	22
20	Versatile Glycosyl Sulfonates in β‣elective Câ€Glycosylation. Angewandte Chemie - International Edition, 2020, 59, 4304-4308.	7.2	20
21	Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: AÂCombination for the Stereoselective Synthesis of Armed 1,2- <i>trans</i> -î²-Glycosides at Noncryogenic Temperatures. Organic Letters, 2015, 17, 6262-6265.	2.4	19
22	Reagentâ€Controlled αâ€Selective Dehydrative Glycosylation of 2,6â€Dideoxy―and 2,3,6â€Trideoxy Sugars. Angewandte Chemie, 2016, 128, 10242-10246.	1.6	18
23	Stereospecific Synthesis of the Saccharosamine-Rhamnose-Fucose Fragment Present in Saccharomicin B. Organic Letters, 2018, 20, 4695-4698.	2.4	18
24	Rapid <i>de Novo</i> Preparation of 2,6-Dideoxy Sugar Libraries through Gold-Catalyzed Homopropargyl Orthoester Cyclization. Organic Letters, 2019, 21, 9646-9651.	2.4	13
25	Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Organic Letters, 2020, 22, 3649-3654.	2.4	11
26	Synthesis of the Non-Reducing Hexasaccharide Fragment of Saccharomicin B. Organic Letters, 2018, 20, 7598-7602.	2.4	7
27	Synthesis of the α-Linked Digitoxose Trisaccharide Fragment of Kijanimicin: An Unexpected Application of Glycosyl Sulfonates. Organic Letters, 2022, 24, 731-735.	2.4	6
28	Versatile Glycosyl Sulfonates in βâ€5elective Câ€Glycosylation. Angewandte Chemie, 2020, 132, 4334-4338.	1.6	4
29	Modular continuous flow synthesis of orthogonally protected 6-deoxy glucose glycals. Organic and Biomolecular Chemistry, 2020, 18, 3254-3257.	1.5	4
30	New chemical processes to streamline carbohydrate synthesis. Current Opinion in Chemical Biology, 2022, 70, 102184.	2.8	4
31	The Crossroads of Glycoscience, Infection, and Immunology. Frontiers in Microbiology, 2021, 12, 731008.	1.5	3
32	Synthesis of 2-Deoxyglycosides. , 2021, , 286-312.		2
33	The carbohydrate tail of landomycin A is responsible for its interaction with the repressor protein LanK. FEBS Journal, 2022, 289, 6038-6057.	2.2	2
34	Glycosyl Sulfonates Beyond Triflates. Chemical Record, 2021, 21, 3102-3111.	2.9	1
35	Automated, Multistep Continuousâ€Flow Synthesis of 2,6â€Dideoxy and 3â€Aminoâ€2,3,6â€ŧrideoxy Monosaccharide Building Blocks. Angewandte Chemie, 2021, 133, 23355.	1.6	0
36	Evolution of a Reagent-Controlled Strategy for \hat{I}^2 -Selective C-Glycoside Synthesis. Synlett, 0, , .	1.0	0